-
Notifications
You must be signed in to change notification settings - Fork 0
/
available_processes.json
4597 lines (4597 loc) · 132 KB
/
available_processes.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"id": "absolute",
"summary": "Absolute value",
"description": "Computes the absolute value of a real number `x`, which is the \"unsigned\" portion of x and often denoted as *|x|*.\n\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed absolute value.",
"schema": {
"type": [
"number",
"null"
],
"minimum": 0
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
},
{
"arguments": {
"x": 3.5
},
"returns": 3.5
},
{
"arguments": {
"x": -0.4
},
"returns": 0.4
},
{
"arguments": {
"x": -3.5
},
"returns": 3.5
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/AbsoluteValue.html",
"title": "Absolute value explained by Wolfram MathWorld"
}
]
},
{
"id": "add",
"summary": "Addition of two numbers",
"description": "Sums up the two numbers `x` and `y` (*x + y*) and returns the computed sum.\n\nNo-data values are taken into account so that `null` is returned if any element is such a value.\n\nThe computations follow [IEEE Standard 754](https://ieeexplore.ieee.org/document/8766229) whenever the processing environment supports it.",
"categories": [
"math"
],
"parameters": [
{
"name": "x",
"description": "The first summand.",
"schema": {
"type": [
"number",
"null"
]
}
},
{
"name": "y",
"description": "The second summand.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed sum of the two numbers.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 5,
"y": 2.5
},
"returns": 7.5
},
{
"arguments": {
"x": -2,
"y": -4
},
"returns": -6
},
{
"arguments": {
"x": 1,
"y": null
},
"returns": null
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/Sum.html",
"title": "Sum explained by Wolfram MathWorld"
},
{
"rel": "about",
"href": "https://ieeexplore.ieee.org/document/8766229",
"title": "IEEE Standard 754-2019 for Floating-Point Arithmetic"
}
]
},
{
"id": "add_dimension",
"summary": "Add a new dimension",
"description": "Adds a new named dimension to the data cube.\n\nAfterwards, the dimension can be referenced with the specified `name`. If a dimension with the specified name exists, the process fails with a `DimensionExists` error. The dimension label of the dimension is set to the specified `label`.",
"categories": [
"cubes"
],
"parameters": [
{
"name": "data",
"description": "A data cube to add the dimension to.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "name",
"description": "Name for the dimension.",
"schema": {
"type": "string"
}
},
{
"name": "label",
"description": "A dimension label.",
"schema": [
{
"type": "number"
},
{
"type": "string"
}
]
},
{
"name": "type",
"description": "The type of dimension, defaults to `other`.",
"schema": {
"type": "string",
"enum": [
"spatial",
"temporal",
"bands",
"other"
]
},
"default": "other",
"optional": true
}
],
"returns": {
"description": "The data cube with a newly added dimension. The new dimension has exactly one dimension label. All other dimensions remain unchanged.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
"exceptions": {
"DimensionExists": {
"message": "A dimension with the specified name already exists."
}
}
},
{
"id": "aggregate_temporal_frequency",
"summary": "Temporal aggregations based on frequencies",
"description": "Computes a temporal aggregation based on calendar hierarchies such as year, month, week or seasons. For other calendar hierarchies ``aggregate_temporal()`` can be used.\n\nFor each interval, all data along the dimension will be passed through the reducer.\n\nIf the dimension is not set or is set to `null`, the data cube is expected to only have one temporal dimension.",
"categories": [
"aggregate & resample",
"climatology",
"cubes"
],
"parameters": [
{
"name": "data",
"description": "A data cube.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "frequency",
"description": "The time intervals to aggregate. The following pre-defined values are available:\n\n* `hourly`: Hour of the day\n* `daily`: Day of the year\n* `weekly`: Week of the year\n* `monthly`: Month of the year\n* `yearly`: Proleptic years\n* `seasons`: Refers to three month periods of the calendar seasons (December - February, March - May, June - August, September - November).\n* `tropical_seasons`: Refers to the six month periods of the tropical seasons (November - April, Mai - October).",
"schema": {
"type": "string",
"enum": [
"hourly",
"daily",
"weekly",
"monthly",
"yearly",
"seasons",
"tropical_seasons"
]
}
},
{
"name": "reducer",
"description": "A reducer to be applied on all values along the specified dimension. A reducer is a single process such as ``mean()`` or a set of processes, which computes a single value for a list of values, see the category 'reducer' for such processes.",
"schema": {
"type": "object",
"subtype": "process-graph",
"parameters": [
{
"name": "data",
"description": "A labeled array with elements of any type.",
"schema": {
"type": "array",
"subtype": "labeled-array",
"items": {
"description": "Any data type."
}
}
},
{
"name": "context",
"description": "Additional data passed by the user.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
]
}
},
{
"name": "dimension",
"description": "The name of the temporal dimension for aggregation. All data along the dimension will be passed through the specified reducer. If the dimension is not set or set to `null`, the data cube is expected to only have one temporal dimension. Fails with a `TooManyDimensions` error if it has more dimensions. Fails with a `DimensionNotAvailable` error if the specified dimension does not exist.\n\n**Note:** The default dimensions a data cube provides are described in the collection's metadata field `cube:dimensions`.",
"schema": {
"type": [
"string",
"null"
]
},
"default": null,
"optional": true
},
{
"name": "context",
"description": "Additional data to be passed to the reducer.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
],
"returns": {
"description": "A data cube with potentially lower resolution and cardinality, but the same number of dimensions as the original data cube. The specified temporal dimension has the following dimension labels (`YYYY` = four-digit year, `MM` = two-digit month, `DD` two-digit day of month):\n\n* `hourly`: `YYYY-MM-DD-0` - `YYYY-MM-DD-23`\n* `daily`: `YYYY-1` - `YYYY-365`\n* `weekly`: `YYYY-1` - `YYYY-52`\n* `monthly`: `YYYY-1` - `YYYY-12`\n* `yearly`: `YYYY`\n* `seasons`: `YYYY-djf` (December - February), `YYYY-mam` (March - May), `YYYY-jja` (June - August), `YYYY-son` (September - November).\n* `tropical_seasons`: `YYYY-ndjfma` (November - April), `YYYY-mjjaso` (May - October).",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
"exceptions": {
"TooManyDimensions": {
"message": "The data cube contains multiple temporal dimensions. The parameter `dimension` must be specified."
},
"DimensionNotAvailable": {
"message": "A dimension with the specified name does not exist."
},
"DistinctDimensionLabelsRequired": {
"message": "The dimension labels have duplicate values. Distinct labels must be specified."
}
},
"links": [
{
"href": "https://open-eo.github.io/openeo-api/glossary/#aggregation-and-resampling",
"rel": "about",
"title": "Aggregation explained in the openEO glossary"
}
]
},
{
"id": "anomaly",
"summary": "Computes anomalies",
"description": "Computes anomalies based on normals for a specific temporal frequency.",
"categories": [
"climatology",
"cubes",
"math"
],
"parameters": [
{
"name": "data",
"description": "A data cube with exactly one temporal dimension and the following dimension labels for the given frequency (`YYYY` = four-digit year, `MM` = two-digit month, `DD` two-digit day of month):\n\n* `hourly`: `YYYY-MM-DD-0` - `YYYY-MM-DD-23`\n* `daily`: `YYYY-1` - `YYYY-365`\n* `weekly`: `YYYY-1` - `YYYY-52`\n* `monthly`: `YYYY-1` - `YYYY-12`\n* `yearly`: `YYYY`\n* `single_period` / `climatology_period`: A single dimension label with any name is expected.\n* `seasons`: `YYYY-djf` (December - February), `YYYY-mam` (March - May), `YYYY-jja` (June - August), `YYYY-son` (September - November)\n* `tropical_seasons`: `YYYY-ndjfma` (November - April), `YYYY-mjjaso` (May - October)\n\n``aggregate_temporal_frequency()`` can compute such a data cube.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "normals",
"description": "A data cube with normals, e.g. daily, monthly or yearly values computed from a process such as ``climatological_normal()``. Must contain exactly one temporal dimension with the following dimension labels for the given frequency:\n\n* `hourly`: `0` - `23`\n* `daily`: `1` - `365`\n* `weekly`: `1` - `52`\n* `monthly`: `1` - `12`\n* `yearly`: Four-digit year numbers\n* `single_period` / `climatology_period`: A single dimension label with any name is expected.\n* `seasons`: `djf` (December - February), `mam` (March - May), `jja` (June - August), `son` (September - November)\n* `tropical_seasons`: `ndjfma` (November - April), `mjjaso` (May - October)",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "frequency",
"description": "Specifies the time intervals available in the data cubes. The following options are available:\n\n* `hourly`: Hour of the day\n* `daily`: Day of the year\n* `weekly`: Week of the year\n* `monthly`: Month of the year\n* `yearly`: Proleptic years\n* `seasons`: Refers to three month periods of the calendar seasons (December - February, March - May, June - August, September - November).\n* `tropical_seasons`: Refers to the six month periods of the tropical seasons (November - April, Mai - October).",
"schema": {
"type": "string",
"enum": [
"hourly",
"daily",
"weekly",
"monthly",
"yearly",
"single_period",
"climatology_period",
"seasons",
"tropical_seasons"
]
}
}
],
"returns": {
"description": "A data cube. The cardinality, resolution, the number of dimensions and the dimension labels are the same as for the original data cube.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
}
},
{
"id": "apply",
"summary": "Apply a process to each pixel",
"description": "Applies a *unary* process to each pixel value in the data cube (i.e. a local operation). A unary process takes a single value and returns a single value, for example ``abs()`` or ``linear_scale_range()``. In contrast, the process ``apply_dimension()`` applies a process to all pixel values along a particular dimension.",
"categories": [
"cubes"
],
"parameters": [
{
"name": "data",
"description": "A data cube.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "process",
"description": "A unary process to be applied on each value, may consist of multiple sub-processes.",
"schema": {
"type": "object",
"subtype": "process-graph",
"parameters": [
{
"name": "x",
"description": "The value to process.",
"schema": {
"description": "Any data type."
}
},
{
"name": "context",
"description": "Additional data passed by the user.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
]
}
},
{
"name": "context",
"description": "Additional data to be passed to the process.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
],
"returns": {
"description": "A data cube with the newly computed values and the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain unchanged.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
}
},
{
"id": "arccos",
"summary": "Inverse cosine",
"description": "Computes the arc cosine of `x`. The arc cosine is the inverse function of the cosine so that *arccos(cos(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 1
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseCosine.html",
"title": "Inverse cosine explained by Wolfram MathWorld"
}
]
},
{
"id": "arcosh",
"summary": "Inverse hyperbolic cosine",
"description": "Computes the inverse hyperbolic cosine of `x`. It is the inverse function of the hyperbolic cosine so that *arcosh(cosh(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 1
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseHyperbolicCosine.html",
"title": "Inverse hyperbolic cosine explained by Wolfram MathWorld"
}
]
},
{
"id": "arcsin",
"summary": "Inverse sine",
"description": "Computes the arc sine of `x`. The arc sine is the inverse function of the sine so that *arcsin(sin(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseSine.html",
"title": "Inverse sine explained by Wolfram MathWorld"
}
]
},
{
"id": "arctan",
"summary": "Inverse tangent",
"description": "Computes the arc tangent of `x`. The arc tangent is the inverse function of the tangent so that *arctan(tan(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseTangent.html",
"title": "Inverse tangent explained by Wolfram MathWorld"
}
]
},
{
"id": "array_element",
"summary": "Get an element from an array",
"description": "Returns the element with the specified index or label from the array.\n\nEither the parameter `index` or `label` must be specified, otherwise the `ArrayElementParameterMissing` exception is thrown. If both parameters are set the `ArrayElementParameterConflict` exception is thrown.",
"categories": [
"arrays",
"reducer"
],
"parameters": [
{
"name": "data",
"description": "An array.",
"schema": {
"type": "array",
"items": {
"description": "Any data type is allowed."
}
}
},
{
"name": "index",
"description": "The zero-based index of the element to retrieve.",
"schema": {
"type": "integer"
},
"optional": true
},
{
"name": "label",
"description": "The label of the element to retrieve.",
"schema": [
{
"type": "number"
},
{
"type": "string"
}
],
"optional": true
},
{
"name": "return_nodata",
"description": "By default this process throws an `ArrayElementNotAvailable` exception if the index or label is invalid. If you want to return `null` instead, set this flag to `true`.",
"schema": {
"type": "boolean"
},
"default": false,
"optional": true
}
],
"returns": {
"description": "The value of the requested element.",
"schema": {
"description": "Any data type is allowed."
}
},
"exceptions": {
"ArrayElementNotAvailable": {
"message": "The array has no element with the specified index or label."
},
"ArrayElementParameterMissing": {
"message": "The process 'array_element' requires either the 'index' or 'labels' parameter to be set."
},
"ArrayElementParameterConflict": {
"message": "The process 'array_element' only allows that either the 'index' or the 'labels' parameter is set."
}
},
"examples": [
{
"arguments": {
"data": [
9,
8,
7,
6,
5
],
"index": 2
},
"returns": 7
},
{
"arguments": {
"data": [
"A",
"B",
"C"
],
"index": 0
},
"returns": "A"
},
{
"arguments": {
"data": [],
"index": 0,
"return_nodata": true
},
"returns": null
}
]
},
{
"id": "arsinh",
"summary": "Inverse hyperbolic sine",
"description": "Computes the inverse hyperbolic sine of `x`. It is the inverse function of the hyperbolic sine so that *arsinh(sinh(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseHyperbolicSine.html",
"title": "Inverse hyperbolic sine explained by Wolfram MathWorld"
}
]
},
{
"id": "artanh",
"summary": "Inverse hyperbolic tangent",
"description": "Computes the inverse hyperbolic tangent of `x`. It is the inverse function of the hyperbolic tangent so that *artanh(tanh(x)) = x*.\n\nWorks on radians only.\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > trigonometric"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The computed angle in radians.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/InverseHyperbolicTangent.html",
"title": "Inverse hyperbolic tangent explained by Wolfram MathWorld"
}
]
},
{
"id": "ceil",
"summary": "Round fractions up",
"description": "The least integer greater than or equal to the number `x`.\n\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math > rounding"
],
"parameters": [
{
"name": "x",
"description": "A number to round up.",
"schema": {
"type": [
"number",
"null"
]
}
}
],
"returns": {
"description": "The number rounded up.",
"schema": {
"type": [
"integer",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": 0
},
"returns": 0
},
{
"arguments": {
"x": 3.5
},
"returns": 4
},
{
"arguments": {
"x": -0.4
},
"returns": 0
},
{
"arguments": {
"x": -3.5
},
"returns": -3
}
],
"links": [
{
"rel": "about",
"href": "http://mathworld.wolfram.com/CeilingFunction.html",
"title": "Ceiling explained by Wolfram MathWorld"
}
]
},
{
"id": "climatological_normal",
"summary": "Computes climatology normals",
"description": "Climatological normal period is a usually 30-year average of a weather variable. Climatological normals are used as an average or baseline to evaluate climate events and provide context for yearly, monthly, daily or seasonal variability. The default climatology period is from 1981 until 2010 (both inclusive).",
"categories": [
"climatology"
],
"parameters": [
{
"name": "data",
"description": "A data cube with exactly one temporal dimension. The datacube must span at least the temporal interval specified in the parameter `climatology_period`.\n\nSeasonal periods may span two consecutive years, e.g. temporal winter that includes months December, January and February. If the required months before the actual climate period are available, the season is taken into account. If not available, the first season is not taken into account and the seasonal mean is based on one year less than the other seasonal normals. The incomplete season at the end of the last year is never taken into account.",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
{
"name": "frequency",
"description": "The time intervals to aggregate the average value for. The following pre-defined frequencies are supported:\n\n* `daily`: Day of the year\n* `monthly`: Month of the year\n* `climatology_period`: The period specified in the `climatology_period`.\n* `seasons`: Refers to three month periods of the calendar seasons (December - February, March - May, June - August, September - November).\n* `tropical_seasons`: Refers to the six month periods of the tropical seasons (November - April, Mai - October).",
"schema": {
"type": "string",
"enum": [
"daily",
"monthly",
"seasons",
"tropical_seasons",
"climatology_period"
]
}
},
{
"name": "climatology_period",
"description": "Closed temporal interval. The first element of the array is the first year to be fully included in the temporal interval. The second element is the last year to be fully included in the temporal interval. The default period is from 1981 until 2010 (both inclusive).",
"schema": {
"type": "array",
"subtype": "temporal-interval",
"minItems": 2,
"maxItems": 2,
"items": {
"type": "string",
"subtype": "year",
"minLength": 4,
"maxLength": 4,
"pattern": "^\\d{4}$"
}
},
"default": [
"1981",
"2010"
],
"optional": true
}
],
"returns": {
"description": "A data cube with potentially cardinality, but the same resolution and number of dimensions as the original data cube. The temporal dimension has the following dimension labels:\n\n* `daily`: `1` - `365`\n* `monthly`: `1` - `12`\n* `climatology_period`: `climatology_period`\n* `seasons`: `djf` (December - February), `mam` (March - May), `jja` (June - August), `son` (September - November)\n* `tropical_seasons`: `ndjfma` (November - April), `mjjaso` (May - October)",
"schema": {
"type": "object",
"subtype": "raster-cube"
}
},
"links": [
{
"rel": "about",
"href": "https://en.wikipedia.org/wiki/Climatological_normal",
"title": "Background information on climatology normal by Wikipedia"
}
]
},
{
"id": "clip",
"summary": "Clip a value between a minimum and a maximum",
"description": "Clips a number between specified minimum and maximum values. A value larger than the maximal value will have the maximal value, a value lower than minimal value will have the minimal value.\n\nThe no-data value `null` is passed through and therefore gets propagated.",
"categories": [
"math"
],
"parameters": [
{
"name": "x",
"description": "A number.",
"schema": {
"type": [
"number",
"null"
]
}
},
{
"name": "min",
"description": "Minimum value. If the value is lower than this value, the process will return the value of this parameter.",
"schema": {
"type": "number"
}
},
{
"name": "max",
"description": "Maximum value. If the value is greater than this value, the process will return the value of this parameter.",
"schema": {
"type": "number"
}
}
],
"returns": {
"description": "The value clipped to the specified range.",
"schema": {
"type": [
"number",
"null"
]
}
},
"examples": [
{
"arguments": {
"x": -5,
"min": -1,
"max": 1
},
"returns": -1
},
{
"arguments": {
"x": 10.001,
"min": 1,
"max": 10
},
"returns": 10
},
{
"arguments": {
"x": 1e-06,
"min": 0,
"max": 0.02
},
"returns": 1e-06
},
{
"arguments": {
"x": null,
"min": 0,
"max": 1
},
"returns": null
}
]
},