Unifying Variational Autoencoder (VAE) implementations in Pytorch (NeurIPS 2022)
-
Updated
Jul 31, 2024 - Python
Unifying Variational Autoencoder (VAE) implementations in Pytorch (NeurIPS 2022)
Optimus: the first large-scale pre-trained VAE language model
[CVPR 2021 Oral] Official PyTorch implementation of Soft-IntroVAE from the paper "Soft-IntroVAE: Analyzing and Improving Introspective Variational Autoencoders"
VAE with RealNVP prior and Super-Resolution VAE in PyTorch. Code release for https://arxiv.org/abs/2006.05218.
Pytorch implementation of GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection
Generative models (GAN, VAE, Diffusion Models, Autoregressive Models) implemented with Pytorch, Pytorch_lightning and hydra.
🤖 | Learning PyTorch through official examples
moai is a PyTorch-based AI Model Development Kit (MDK) created to improve data-driven model workflows, design and reproducibility.
Dirichlet-Variational Auto-Encoder by PyTorch
Official PyTorch implementation of A Quaternion-Valued Variational Autoencoder (QVAE).
Symbol emergence using Variational Auto-Encoder and Gaussian Mixture Model (Inter-GMM-VAE)~VAEを活用した実画像からの記号創発~
Deep Learning And Applied Artificial Intelligence Project 2019/2020 - Molecular Synthesis & Reconstruction
Pytorch Implementation of Hou, Shen, Sun, Qiu, "Deep Feature Consistent Variational Autoencoder", 2016
Mapping properties to molecules in QM7-X
A collection of research paper implementations in PyTorch
A Variational Autoencoder in PyTorch for the CelebA Dataset.
Variational Autoencoder (VAE)-based molecular SMILES string generator
Codebase for the paper: Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts
VAE and CVAE pytorch implement based on MNIST
Implementation of Variational Auto Encoder (VAE) in pytorch using MNIST data
Add a description, image, and links to the vae-pytorch topic page so that developers can more easily learn about it.
To associate your repository with the vae-pytorch topic, visit your repo's landing page and select "manage topics."