-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlparser.m
224 lines (181 loc) · 6.38 KB
/
nlparser.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
% nl = ["I1 0 1 DC 3";
% "R1 0 1 2";
% "R2 1 2 6";
% "R3 2 0 7";
% "I 2 0 DC 12";
% ".SSA";
% ".TRA"];
%
% [ele, q] = nlparserf(nl);
function [elements, queries] = nlparser(nl)
%netlist parser: this function takes a netlist as input and outputs a cell array of
%element objects. all the elements in the netlist is converted to objects
%% making a cell array of cell array first
% example
% {
% {'R1', 1, 2, 1000};
% {'V1', 1, 2, 'DC', 5}
% }
format long;
len_nl = length(nl);
cell_nl = cell(1, len_nl);
for i=1:len_nl
stmt = nl(i);
stmt = split(stmt);
ls = length(stmt);
temp_cell = cell(1,ls);
for j = 1:ls
temp = str2double(stmt(j));
if isnan(temp)
temp = char(stmt(j));
end
temp_cell{j} = temp;
end
cell_nl{i,1} = temp_cell;
end
%% making objects and filling the elements cell array
addpath lib;
elcount = 1;
qcount = 1; %query count
for i=1:length(cell_nl)
stmt = cell_nl{i};
el = stmt{1}(1); %element
name = stmt{1}(1:end);
if el == '.'
% QUERIES
% queries will be stored in the queries cell array of cell array
% where each cell array of the cell array will hold a query
ana_type = stmt{1}(2:end);
query_cell = {}; %resetting query_cell array
if ana_type == "SSA"
query_cell{1} = ana_type;
queries{qcount} = query_cell;
elseif ana_type == "TRA"
%.TRA start stopt stept UIC
% UIC is optional, if UIC is present that means we have to use
% initial condtion. if it is not present that means we don't
% have to use initial condition
query_cell{1} = string(ana_type);
query_cell{2} = stmt{2};
query_cell{3} = stmt{3};
query_cell{4} = stmt{4};
if length(stmt)>=5
if stmt{5} == "UIC", uic = true;
else, uic = false;
end
query_cell{5} = uic;
end
queries{qcount} = query_cell;
end
qcount = qcount + 1;
elseif el == "R" || el == "C" || el == "L"
%R_name N+ N- val
%C_name N+ N- val [IC]; InitialCondition is optional to add. it
%holds the voltage at t= 0
%L_name N+ N- val [IC]; InitialCondition is optional to add. it
%holds the current at t= 0
val = stmt{4};
nodes = [stmt{2}, stmt{3}];
if el == "C" || el == "L"
if length(stmt) >= 5
InC = stmt{5}; %initial condition
else
InC = 0;
end
end
if el == "R" elements{elcount} = R(name, nodes, val);
elseif el == "C"
elements{elcount} = C(name, nodes, val);
elements{elcount}.IC = InC;
elements{elcount}.prev_val = InC;
elseif el == "L"
elements{elcount} = L(name, nodes, val);
elements{elcount}.IC = InC;
elements{elcount}.prev_val = InC;
end
elcount = elcount + 1;
elseif (el == "V" || el == "I") && stmt{4} == "DC"
%VDC
%IDC
val = stmt{5};
nodes = [stmt{2}, stmt{3}];
if el == "V" elements{elcount} = VDC(name, nodes, val);
elseif el == "I" elements{elcount} = IDC(name, nodes, val);
end
elcount = elcount + 1;
elseif (el == "V" || el == "I") && stmt{4} == "SIN"
%VSIN sinusoidal voltage source
% V N+ N- SIN mag freq ini_phase(in degree)
%ISIN sinusoidal current source
% I N+ N- SIN mag freq ini_phase(in degree)
mag = stmt{5};
freq = stmt{6};
iph = stmt{7};
val = [mag freq iph];
nodes = [stmt{2}, stmt{3}];
if el == "V"
elements{elcount} = VSIN(name, nodes, val);
elseif el == "I"
elements{elcount} = ISIN(name, nodes, val);
end
elcount = elcount + 1;
elseif el == "G"
%VCCS
val = stmt{6};
nodes = [stmt{2}, stmt{3}, stmt{4}, stmt{5}];
elements{elcount} = VCCS(name, nodes, val);
elcount = elcount + 1;
elseif el == "F" || el == "H"
%CCCS
% Vdummy NC+ NC- val
% Fname N+ N- Vdummy Fval
% Hname N+ N- Vdummy Hval
% the dummy voltage source must be declared before the F statement
val = stmt{5};
main_nodes = [stmt{2}, stmt{3}];
%finding the dummy voltage source to know the control nodes
Vdum_name = stmt{4}; %name of dummy voltage source
for j = 1:length(elements)
if string(elements{j}.name) == string(Vdum_name)
Vdum = elements{j};
contrl_nodes = Vdum.nodes;
break;
end
end
nodes = [main_nodes, contrl_nodes];
if el == "F"
elements{elcount} = CCCS(name, nodes, val);
elseif el == "H"
elements{elcount} = CCVS(name, nodes, val);
end
elcount = elcount + 1;
elseif el == "E"
% VCVS
% Ek N+ N- NC+ NC- GainFactor
val = stmt{6};
nodes = [stmt{2}, stmt{3}, stmt{4}, stmt{5}];
elements{elcount} = VCVS(name, nodes, val);
elcount = elcount + 1;
elseif el == "S"
%SC short circuit
% S N+ N-
val = [];
nodes = [stmt{2}, stmt{3}];
elements{elcount} = SC(name, nodes, val);
elcount = elcount + 1;
elseif el == "U"
%OPENING OR CLOSING SWITCH
%U N1 N2 TCLOSE/TOPEN closing_time;
% example: U 1 3 TCLOSE 2; this switch closes at t = 2 and is open before t = 2
% example: U 2 5 TOPEN 3; this one is closed before t = 3 and opened after t = 3
%%%% example: U 1 2 4 TSW 2; before t = 2s, the switch connects node 1 and 2, after t = 2s, the switch connects node 1 and 3
val = stmt{5};
type = stmt{4};
nodes = [stmt{2}, stmt{3}];
if type == "TCLOSE" elements{elcount} = UTCLOSE(name, nodes, val);
% elseif type == "TOPEN" elements{elcount} = UTCLOSE(name, nodes, val);
end
elcount = elcount + 1;
end
end
end