forked from AdamCSmithCWS/BBS_iCAR_route_trends
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CV_Slope_Stan_iCAR_route_cmdstan.R
1366 lines (989 loc) · 45.7 KB
/
CV_Slope_Stan_iCAR_route_cmdstan.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## 1-step ahead, cross-validation of a BYM route-level trend model for the BBS
## example using two species.
library(bbsBayes)
library(tidyverse)
library(cmdstanr)
# library(rstan)
# rstan_options(auto_write = TRUE, javascript = FALSE)
# library(shinystan)
library(sf)
library(spdep)
# library(doParallel)
# library(foreach)
library(ggforce)
#library(tidybayes)
#source("functions/mungeCARdata4stan.R")
source("functions/neighbours_define.R") ## function to define neighbourhood relationships
source("functions/prepare-jags-data-alt.R") ## small alteration of the bbsBayes function
source("functions/get_basemap_function.R") ## loads one of the bbsBayes strata maps
source("functions/posterior_summary_functions.R") ## functions similar to tidybayes that work on cmdstanr output
## changes captured in a commit on Nov 20, 2020
# load and stratify CASW data ---------------------------------------------
#species = "Pacific Wren"
#species = "Barred Owl"
strat = "bbs_usgs"
model = "slope"
strat_data = stratify(by = strat)
firstYear = 2004
lastYear = 2019 # final year to consider
# select a minimum year for prediction (i.e., a route has to have data between 2004 and 2011 to be included)
# similar to "L" in Burkner et al 2020 (https://doi.org/10.1080/00949655.2020.1783262)
minimumYear = 2011
allspecies.eng = strat_data$species_strat$english
species_list = allspecies.eng#[-which(allspecies.eng %in% species_list)]
# optional removing the non-Canadian data ------------------------------------------
Canada_only <- FALSE
if(Canada_only){
scope = "Canada"
names_strata <- get_composite_regions(strata_type = strat) ## bbsBayes function that gets a list of the strata names and their composite regions (provinces, BCRs, etc.)
us_strata_remove <- names_strata[which(names_strata$national == "US"),"region"] # character vector of the strata names to remove from data
}else{
scope = "RangeWide"
us_strata_remove <- NULL
}
# SPECIES LOOP ------------------------------------------------------------
output_dir <- "G:/BBS_iCAR_route_trends/output"
#output_dir_simp <- "G:/BBS_iCAR_route_trends/output"
#species = species_list[748]
# for(species in rev(allspecies.eng)){
#
selSpecies = c("Boat-tailed Grackle","Ring-billed Gull","Dusky Flycatcher",
"Broad-winged Hawk","Brown Creeper",
"Tennessee Warbler","Cape May Warbler","Northern Bobwhite")
sp_type = data.frame(species = selSpecies,
spatial_pattern = c("weak","weak","weak",
"moderate","moderate",
"strong","strong","strong"))
pred_save_allsp <- NULL
sp_w_trends <- list.files(path = "Figures/images/")
sp_w_trends <- gsub(gsub(sp_w_trends,pattern = "_Trends_2004.png",replacement = ""),pattern = "_",replacement = " ")
rselsp <- sample(sp_w_trends,50)
selSpecies <- unique(c(selSpecies,rselsp))
for(species in selSpecies[c(54:40)]){
species_f <- gsub(species,pattern = " ",replacement = "_",fixed = T)
species_f <- gsub(species_f,pattern = "'",replacement = "",fixed = T)
# if(file.exists(sp_file)){next}
#
#series of if statements that skip analysing hybrids, composite species groups, etc.
if(grepl(pattern = "hybrid",x = species)){next}
if(grepl(pattern = "unid.",x = species)){next}
if(grepl(pattern = " x ",x = species)){next}
if(grepl(pattern = "/",fixed = TRUE,x = species)){next}
if(substr(x = species,1,1) == "("){next}
## identify the routes that can be included
## routes that have data between firstYear and mimimumYear
jags_data_inc = try(prepare_jags_data(strat_data = strat_data,
species_to_run = species,
model = model,
#n_knots = 10,
min_year = firstYear,
max_year = minimumYear,
min_n_routes = 1,
strata_rem = us_strata_remove),silent = TRUE) # this final argument removes all data from the US
### now just hte Canadian data remain.
if(class(jags_data_inc) == "try-error"){next}
if(jags_data_inc$ncounts < 500){next}
# spatial neighbourhood define --------------------------------------------
# strata map of one of the bbsBayes base maps
# helps group and set boundaries for the route-level neighbours
strata_map <- get_basemap(strata_type = strat,
transform_laea = TRUE,
append_area_weights = FALSE)
realized_strata_map = filter(strata_map,ST_12 %in% unique(jags_data_inc$strat_name))
# Spatial boundaries set up --------------------
# the iCAR (intrinsic Conditional AutoRegressive) spatial model uses neighbourhood structure
# to share information on abundance and trend (intercept and slope) among BBS routes
#
strata_list <- data.frame(ST_12 = unique(jags_data_inc$strat_name),
strat = unique(jags_data_inc$strat))
realized_strata_map <- inner_join(realized_strata_map,strata_list, by = "ST_12")
strata_bounds <- st_union(realized_strata_map) #union to provide a simple border of the realised strata
strata_bounds_buf = st_buffer(strata_bounds,dist = 300000) #buffering the realised strata by 300km
jags_data_inc[["routeF"]] <- as.integer(factor((jags_data_inc$route)))
route_map = unique(data.frame(route = jags_data_inc$route,
routeF = jags_data_inc$routeF,
strat = jags_data_inc$strat_name,
Latitude = jags_data_inc$Latitude,
Longitude = jags_data_inc$Longitude))
# reconcile duplicate spatial locations -----------------------------------
# adhoc way of separating different routes with the same starting coordinates
# this shifts the starting coordinates of teh duplicates by ~1.5km to the North East
# ensures that the duplicates have a unique spatial location, but remain very close to
# their original location and retain the correct neighbourhood relationships
# these duplicates happen when a "new" route is established because some large proportion
# of the end of a route is changed, but the start-point remains the same
dups = which(duplicated(route_map[,c("Latitude","Longitude")]))
while(length(dups) > 0){
route_map[dups,"Latitude"] <- route_map[dups,"Latitude"]+0.01 #=0.01 decimal degrees ~ 1km
route_map[dups,"Longitude"] <- route_map[dups,"Longitude"]+0.01 #=0.01 decimal degrees ~ 1km
dups = which(duplicated(route_map[,c("Latitude","Longitude")]))
}
dups = which(duplicated(route_map[,c("Latitude","Longitude")]))
if(length(dups) > 0){stop(paste(spec,"ERROR - At least one duplicate route remains"))}
route_map = st_as_sf(route_map,coords = c("Longitude","Latitude"))
st_crs(route_map) <- 4269 #NAD83 commonly used by US federal agencies
#load strata map
route_map = st_transform(route_map,crs = st_crs(realized_strata_map))
## returns the adjacency data necessary for the stan model
## also exports maps and saved data objects to plot_dir
car_stan_dat <- neighbours_define(real_strata_map = route_map,
strat_link_fill = 100000,
plot_neighbours = TRUE,
species = species,
plot_dir = "route_maps/",
plot_file = paste0("_CV_",scope,"_route_maps"),
save_plot_data = TRUE,
voronoi = TRUE,
alt_strat = "routeF",
add_map = realized_strata_map)
# Remove the remaining routes from the bbsBayes stratified data -----------
routes_inc <- route_map %>%
data.frame() %>%
select(route,routeF,strat)
strat_data_reduced <- strat_data
strat_data_reduced$route_strat <- strat_data_reduced$route_strat[which(strat_data_reduced$route_strat$rt.uni %in% routes_inc$route),]
strat_data_reduced$bird_strat <- strat_data_reduced$bird_strat[which(strat_data_reduced$bird_strat$rt.uni %in% routes_inc$route),]
jags_data_red_allyears <- prepare_jags_data(strat_data = strat_data_reduced,
species_to_run = species,
model = model,
#n_knots = 10,
min_year = firstYear,
max_year = lastYear,
min_n_routes = 1)
routes_inc_red <- unique(data.frame(strat_name = jags_data_red_allyears$strat_name,
route = jags_data_red_allyears$route))
if(!any(routes_inc_red$route %in% routes_inc$route)){
stop(paste("Some routes in recent data are missing from original data"))
}
full_obs_df <- data.frame(count = jags_data_red_allyears$count,
r_year = jags_data_red_allyears$r_year,
year = jags_data_red_allyears$year,
firstyr = jags_data_red_allyears$firstyr,
route = jags_data_red_allyears$route,
ObsN = jags_data_red_allyears$ObsN) %>%
left_join(.,routes_inc, by = c("route")) %>%
arrange(year)
#identify the order in which the observers show up in the dataset
obs_sort <- unique(full_obs_df$ObsN)
# create an observer index that is constant across time
full_obs_df$observer <- as.integer(factor(full_obs_df$ObsN,levels = obs_sort,ordered = TRUE))
nroutes <- max(routes_inc$routeF)
# CROSS-VALIDATION loop through the annual re-fitting --------------------------------------
predictions_save_CAR <- NULL
predictions_save_NonCAR <- NULL
for(ynext in (minimumYear+1):lastYear){
sp_file <- paste0(output_dir,"/",species_f,"_",scope,"_",firstYear,"_",ynext,"_CV_iCAR.RData")
# setting up the fitting data ------------------------------------------
obs_df_fit <- full_obs_df[which(full_obs_df$r_year <= ynext-1),]
stan_data <- list(count = obs_df_fit$count,
year = obs_df_fit$year,
route = obs_df_fit$routeF,
firstyr = obs_df_fit$firstyr,
observer = obs_df_fit$observer,
nobservers = max(obs_df_fit$observer),
nyears = max(obs_df_fit$year),
nroutes = nroutes,
ncounts = length(obs_df_fit$count),
fixedyear = floor(max(obs_df_fit$year)/2))
stan_data[["N_edges"]] = car_stan_dat$N_edges
stan_data[["node1"]] = car_stan_dat$node1
stan_data[["node2"]] = car_stan_dat$node2
# setting up the prediction data ------------------------------------------
obs_df_predict <- full_obs_df[which(full_obs_df$r_year == ynext),]
stan_data[["route_pred"]] <- obs_df_predict$routeF
stan_data[["count_pred"]] <- obs_df_predict$count
stan_data[["firstyr_pred"]] <- obs_df_predict$firstyr
stan_data[["observer_pred"]] <- obs_df_predict$observer
stan_data[["ncounts_pred"]] <- length(obs_df_predict$count)
mod.file = "models/slope_iCAR_route2_LFO_CV.stan"
## compile model
slope_model <- cmdstan_model(mod.file)
init_def <- function(){ list(noise_raw = rnorm(stan_data$ncounts,0,0.1),
alpha_raw = rnorm(stan_data$nroutes,0,0.1),
ALPHA = 0,
BETA = 0,
eta = 0,
obs_raw = rnorm(stan_data$nobservers,0,0.1),
sdnoise = 0.2,
sdobs = 0.1,
sdbeta_space = runif(1,0.01,0.1),
sdbeta_rand = runif(1,0.01,0.1),
beta_raw_space = rnorm(stan_data$nroutes,0,0.01),
beta_raw_rand = rnorm(stan_data$nroutes,0,0.01))}
slope_stanfit <- slope_model$sample(
data=stan_data,
refresh=100,
chains=3, iter_sampling=1000,
iter_warmup=1000,
parallel_chains = 3,
#pars = parms,
adapt_delta = 0.8,
max_treedepth = 14,
seed = 123,
init = init_def)
out_base <- paste0(species_f,"_",scope,"_",firstYear,"_CV_CAR_",ynext)
# export to csv and read in as rstan --------------------------------------
slope_stanfit$save_output_files(dir = output_dir,
basename = out_base,
random = FALSE,
timestamp = FALSE)
csv_files <- dir(output_dir,pattern = out_base,full.names = TRUE)
shiny_explore <- FALSE
if(shiny_explore){
sl_rstan <- rstan::read_stan_csv(csv_files)
launch_shinystan(as.shinystan(sl_rstan))
loo_stan = loo(sl_rstan)
}
log_lik_samples_full <- posterior_samples(fit = slope_stanfit,
parm = "log_lik",
dims = "i")
log_lik_samples <- log_lik_samples_full %>%
posterior_sums(.,quantiles = NULL,dims = "i")
names(log_lik_samples) <- paste0("log_lik_",names(log_lik_samples))
E_pred_samples_full <- posterior_samples(fit = slope_stanfit,
parm = "E_pred",
dims = "i")
E_pred_samples <- E_pred_samples_full %>%
posterior_sums(.,quantiles = NULL,dims = "i")
names(E_pred_samples) <- paste0("E_pred_",names(E_pred_samples))
obs_df_predict_out <- bind_cols(obs_df_predict,log_lik_samples)
obs_df_predict_out <- bind_cols(obs_df_predict_out,E_pred_samples)
obs_df_predict_out$species <- species
predictions_save_CAR <- bind_rows(predictions_save_CAR,obs_df_predict_out)
# nonSpatial model fit ----------------------------------------------------
mod.file.non = "models/slope_noniCAR_route2_LFO_CV.stan"
## removing the spatial input data
stan_data_non <- stan_data
stan_data_non[["N_edges"]] = NULL
stan_data_non[["node1"]] = NULL
stan_data_non[["node2"]] = NULL
## compile model
slope_model_non <- cmdstan_model(mod.file.non)
init_def <- function(){ list(noise_raw = rnorm(stan_data$ncounts,0,0.1),
alpha_raw = rnorm(stan_data$nroutes,0,0.1),
ALPHA = 0,
BETA = 0,
eta = 0,
obs_raw = rnorm(stan_data$nobservers,0,0.1),
sdnoise = 0.2,
sdobs = 0.1,
#sdbeta_space = runif(1,0.01,0.1),
sdbeta_rand = runif(1,0.01,0.1),
#beta_raw_space = rnorm(stan_data$nroutes,0,0.01),
beta_raw_rand = rnorm(stan_data$nroutes,0,0.01))}
slope_stanfit_non <- slope_model_non$sample(
data=stan_data_non,
refresh=100,
chains=3, iter_sampling=1000,
iter_warmup=1000,
parallel_chains = 3,
#pars = parms,
adapt_delta = 0.8,
max_treedepth = 14,
seed = 123,
init = init_def)
out_base_non <- paste0(species_f,"_",scope,"_",firstYear,"_CV_non_",ynext)
# export to csv and read in as rstan --------------------------------------
slope_stanfit_non$save_output_files(dir = output_dir,
basename = out_base_non,
random = FALSE,
timestamp = FALSE)
csv_files <- dir(output_dir,pattern = out_base_non,full.names = TRUE)
log_lik_samples_full_non <- posterior_samples(fit = slope_stanfit_non,
parm = "log_lik",
dims = "i")
log_lik_samples <- log_lik_samples_full_non %>%
posterior_sums(.,quantiles = NULL,dims = "i")
names(log_lik_samples) <- paste0("log_lik_",names(log_lik_samples))
E_pred_samples_full_non <- posterior_samples(fit = slope_stanfit_non,
parm = "E_pred",
dims = "i")
E_pred_samples <- log_lik_samples_full_non %>%
posterior_sums(.,quantiles = NULL,dims = "i")
names(E_pred_samples) <- paste0("E_pred_",names(E_pred_samples))
obs_df_predict_out <- bind_cols(obs_df_predict,log_lik_samples)
obs_df_predict_out <- bind_cols(obs_df_predict_out,E_pred_samples)
obs_df_predict_out$species <- species
predictions_save_NonCAR <- bind_rows(predictions_save_NonCAR,obs_df_predict_out)
save(list = c("log_lik_samples_full",
"E_pred_samples_full",
"slope_stanfit",
"log_lik_samples_full_non",
"E_pred_samples_full_non",
"slope_stanfit_non",
"stan_data",
"stan_data_non",
"obs_df_predict",
"predictions_save_NonCAR",
"predictions_save_CAR",
"ynext",
"sp_file",
"species_f",
"output_dir",
"out_base_non",
"out_base"),
file = sp_file)
print(ynext)
}
predictions_save_NonCAR$model <- "NonSpatial"
predictions_save_CAR$model <- "Spatial"
pred_save = bind_rows(predictions_save_CAR,predictions_save_NonCAR)
save(list = "pred_save",file = paste0("output/",species_f,"_pred_save.RData"))
pred_save_allsp <- bind_rows(pred_save_allsp,pred_save)
save(list = "pred_save_allsp",file = "temp_pred_save3.RData")
}# end species loop
#stopCluster(cl = cluster)
# Temporary and ugly combining of saved results ---------------------------
load("pred_save_allsp.RData")
pred_save_allsp1 <- pred_save_allsp
load("temp_pred_save.RData")
pred_save_allsp2 <- pred_save_allsp
load("temp_pred_save3.RData")
pred_save_allsp3 <- pred_save_allsp
pred_save_allsp <- bind_rows(pred_save_allsp1,pred_save_allsp2,pred_save_allsp3)
#### end ugly
#save(list = "pred_save_allsp",file = "pred_save_allsp.RData")
#save(list = "pred_save_allsp",file = "pred_save_allsp_combined.RData")
load("pred_save_allsp_combined.RData")
# wdrop = which(pred_save_allsp$species == "American Bittern" & pred_save_allsp$r_year == 2012 & pred_save_allsp$route == "14-159")
# pred_save_allsp <- pred_save_allsp[-wdrop,]
pred_save_allsp$yearF <- factor(paste(pred_save_allsp$year,pred_save_allsp$model))
# point_comp = ggplot(data = pred_save_allsp,aes(y = log_lik_mean,group = yearF, colour = model))+
# geom_boxplot(position = position_dodge())+
# facet_wrap(~species,nrow = 6,ncol = 4)
# print(point_comp)
#
#
#
log_lik_comp <- pred_save_allsp %>%
select(species,r_year,year,route,log_lik_mean,model,count) %>%
distinct(.,species,r_year,route,model,.keep_all = TRUE)%>%
group_by(species,r_year,route) %>%
pivot_wider(values_from = log_lik_mean,
names_from = c(model))%>%
mutate(log_lik_dif = Spatial - NonSpatial)
# dif_comp = ggplot(data = log_lik_comp,aes(x = r_year,y = log_lik_dif))+
# #geom_point(position = position_jitter(width = 0.4)) +
# geom_boxplot(aes(y = log_lik_dif,group = r_year))
#
# print(dif_comp)
log_lik_sum_year <- log_lik_comp %>%
group_by(species,r_year) %>%
summarise(mean = mean(log_lik_dif),
median = median(log_lik_dif),
sd = sd(log_lik_dif),
SE = sd(log_lik_dif)/sqrt(n()),
lci = mean-(1.96*SE),
uci = mean+(1.96*SE),
sum = sum(log_lik_dif))%>%
mutate(favoured_model = ifelse(mean > 0,"Spatial","Non-Spatial"),
year = r_year)
log_lik_sum_year
yearly_plot <- ggplot(data = log_lik_sum_year,aes(x = year,y = mean,colour = favoured_model))+
geom_pointrange(aes(ymin = lci,ymax = uci))+
geom_abline(slope = 0,intercept = 0)+
ylab("Mean point-level difference in log(probability)")+
theme_classic()+
facet_wrap(~species,scales = "free")
pdf(file = paste0("Figures/Annual_difference_predictive_accuracy.pdf"),
width = 8.5,
height = 11)
print(yearly_plot)
dev.off()
log_lik_sum_over <- log_lik_comp %>%
group_by(species) %>%
summarise(mean = mean(log_lik_dif),
median = median(log_lik_dif),
sd = sd(log_lik_dif),
SE = sd(log_lik_dif)/sqrt(n()),
lci = mean-(1.96*SE),
uci = mean+(1.96*SE),
sum = sum(log_lik_dif)) %>%
arrange(mean) %>%
mutate(species = factor(species,ordered = TRUE,levels = species),
favoured_model = ifelse(mean > 0,"Spatial","Non-Spatial"))
log_lik_sum_over
overall_plot <- ggplot(data = log_lik_sum_over,aes(x = species,y = mean,colour = favoured_model))+
geom_pointrange(aes(ymin = lci,ymax = uci))+
geom_abline(slope = 0,intercept = 0)+
ylab("Mean point-level difference in log(probability)")+
theme_classic()+
xlab("")+
theme(legend.position = "none")+
coord_flip(ylim = c(-1,1))
pdf(file = paste0("Figures/Overall_difference_predictive_accuracy.pdf"),
width = 10,
height = 7)
print(overall_plot)
dev.off()
overall_plot2 <- ggplot(data = log_lik_sum_over,aes(x = species,y = mean,colour = favoured_model))+
geom_pointrange(aes(ymin = lci,ymax = uci))+
geom_abline(slope = 0,intercept = 0)+
ylab("Mean point-level difference in log(probability)")+
theme_classic()+
xlab("")+
theme(legend.position = "none")+
coord_flip(ylim = c(-30,30))
pdf(file = paste0("Figures/Overall_difference_predictive_accuracy_zoom_out.pdf"),
width = 10,
height = 7)
print(overall_plot2)
dev.off()
# post loop analysis ------------------------------------------------------
#
# launch_shinystan(slope_stanfit)
#
#
# library(loo)
# library(tidyverse)
#
# log_lik_1 <- extract_log_lik(slope_stanfit, merge_chains = FALSE)
# r_eff <- relative_eff(exp(log_lik_1), cores = 10)
# loo_1 <- loo(log_lik_1, r_eff = r_eff, cores = 10)
# print(loo_1)
#
# doy = ((jags_data$month-4)*30+jags_data$day)
# plot(loo_1$pointwise[,"influence_pareto_k"],log(stan_data$count+1))
# plot(loo_1$pointwise[,"influence_pareto_k"],doy)
# plot(doy,log(stan_data$count+1))
#
#
#
# loo2 = data.frame(loo_1$pointwise)
#
# loo2$flag = cut(loo2$influence_pareto_k,breaks = c(0,0.5,0.7,1,Inf))
# dts = data.frame(count = stan_data$count,
# obser = stan_data$obser,
# route = stan_data$route,
# year = stan_data$year)
# loo2 = cbind(loo2,dts)
#
# plot(log(loo2$count+1),loo2$influence_pareto_k)
#
# obserk = loo2 %>% group_by(obser) %>%
# summarise(n = log(n()),
# mean_k = mean(influence_pareto_k),
# max_k = max(influence_pareto_k),
# sd_k = sd(influence_pareto_k),
# mean_looic = mean(looic),
# mean_ploo = mean(p_loo))
# plot(obserk$n,obserk$max_k)
# plot(obserk$n,obserk$mean_k)
# plot(obserk$n,obserk$sd_k)
# plot(obserk$n,obserk$mean_looic)
# plot(obserk$n,obserk$mean_ploo)
#
#
# yeark = loo2 %>% group_by(year) %>%
# summarise(n = n(),
# mean_k = mean(influence_pareto_k),
# q90 = quantile(influence_pareto_k,0.9),
# max_k = max(influence_pareto_k),
# sd_k = sd(influence_pareto_k),
# route = mean(route),
# sd = sd(route))
# plot(yeark$year,yeark$max_k)
# plot(yeark$year,yeark$mean_k)
# plot(yeark$year,yeark$sd_k)
# plot(yeark$year,yeark$q90)
#
# routek = loo2 %>% group_by(route) %>%
# summarise(n = n(),
# mean_k = mean(influence_pareto_k),
# q90_k = quantile(influence_pareto_k,0.9),
# max_k = max(influence_pareto_k),
# sd_k = sd(influence_pareto_k),
# route = mean(route),
# sd = sd(route))
# plot(routek$route,routek$max_k)
# plot(routek$n,routek$mean_k)
#
# plot(routek$route,routek$mean_k)
# plot(routek$route,routek$sd_k)
# plot(routek$route,routek$q90_k)
#
#
# PLOTTING and trend output -----------------------------------------------
# library(tidybayes)
route_trajectories <- FALSE #set to FALSE to speed up mapping
maps = vector(mode = "list",length = 400)
maps2 = vector(mode = "list",length = 400)
maps3 = vector(mode = "list",length = 400)
maps_rand = vector(mode = "list",length = 400)
maps_space = vector(mode = "list",length = 400)
trends_out <- NULL
trends_out_space <- NULL
trends_out_rand <- NULL
sdbeta_dif <- NULL
sdbeta_space_rand <- NULL
jj <- 0
LC = 0.05
UC = 0.95
output_dir <- "G:/BBS_iCAR_route_trends/output"
strata_map <- get_basemap(strata_type = strat,
transform_laea = TRUE,
append_area_weights = FALSE)
for(species in rev(allspecies.eng)){
species_f <- gsub(species,pattern = " ",replacement = "_",fixed = T)
species_f <- gsub(species_f,pattern = "'",replacement = "_",fixed = T)
sp_file <- paste0(output_dir,"/",species_f,"_",scope,"_",firstYear,"_",lastYear,"_slope_route_iCAR.RData")
#sp_file <- paste0("output/",species,"Canadian_",firstYear,"_",lastYear,"_slope_route_iCAR2.RData")
if(file.exists(sp_file)){
load(sp_file)
# if(species == "Northern Cardinal"){next
#
# #csv_files <- dir(output_dir,pattern = out_base,full.names = TRUE)
# }
if(length(csv_files) == 0 | length(csv_files > 3)){
csv_files = paste0(output_dir,"/",
species_f,"_",scope,"_",firstYear,
"-",1:3,".csv")
}
### may be removed after re-running launch_shinystan(slope_stanfit)
sl_rstan <- rstan::read_stan_csv(csv_files)
#launch_shinystan(as.shinystan(sl_rstan))
#loo_stan = loo(sl_rstan)
jj <- jj+1
# laea = st_crs("+proj=laea +lat_0=40 +lon_0=-95") # Lambert equal area coord reference system
#
# locat = system.file("maps",
# package = "bbsBayes")
# map.file = "BBS_USGS_strata"
#
# strata_map = read_sf(dsn = locat,
# layer = map.file)
# strata_map = st_transform(strata_map,crs = laea)
#
# realized_strata_map = filter(strata_map,ST_12 %in% unique(jags_data$strat_name))
#
# strata_list <- data.frame(ST_12 = unique(jags_data$strat_name),
# strat = unique(jags_data$strat))
#
#
# realized_strata_map <- inner_join(realized_strata_map,strata_list, by = "ST_12")
#
####
# add trend and abundance ----------------------------------------
beta_samples = posterior_samples(sl_rstan,"beta",
dims = "s")
# beta_samples2 = posterior_samples(slope_stanfit,"beta",
# dims = "s")
slopes = beta_samples %>% group_by(s) %>%
summarise(b = mean(.value),
lci = quantile(.value,LC),
uci = quantile(.value,UC),
sd = sd(.value),
prec = 1/var(.value),
trend = mean((exp(.value)-1)*100),
lci_trend = quantile((exp(.value)-1)*100,LC),
uci_trend = quantile((exp(.value)-1)*100,UC),
.groups = "keep")
alpha_samples = posterior_samples(sl_rstan,"alpha",
dims = "s")
interc = alpha_samples %>% group_by(s) %>%
summarise(abund = mean(exp(.value)),
lci_i = quantile(exp(.value),LC),
uci_i = quantile(exp(.value),UC),
sd_i = sd(exp(.value)),
prec_i = 1/var(.value),
.groups = "keep")
#plot(log(interc$i),slopes$b)
slops_int = inner_join(slopes,interc,by = "s")
slops_int$routeF = slops_int$s
# random effect plus mean component of slope ----------------------------------------
# BETA_samples = posterior_samples(sl_rstan,BETA) %>%
# rename(BETA = .value) %>%
# ungroup() %>%
# select(BETA,.draw)
#
# beta_rand_samples = posterior_samples(sl_rstan,beta_rand[s]) %>%
# rename(beta_rand = .value) %>%
# ungroup() %>%
# select(beta_rand,.draw,s)
#
# beta_rand_samples <- inner_join(beta_rand_samples,BETA_samples,by = c(".draw"))
#
# slopes_rand_full = beta_rand_samples %>% group_by(s) %>%
# summarise(b = mean(beta_rand + BETA),
# lci = quantile(beta_rand + BETA,LC),
# uci = quantile(beta_rand + BETA,UC),
# sd = sd(beta_rand + BETA),
# prec = 1/var(beta_rand + BETA),
# .groups = "keep")
#
# slopes_rand_full_int = inner_join(slopes_rand_full,interc,by = "s")
# slopes_rand_full_int$routeF = slopes_rand_full_int$s
beta_rand_samples = posterior_samples(sl_rstan,
"beta_rand",
dims = "s")
slopes_rand = beta_rand_samples %>% group_by(s) %>%
summarise(b = mean(.value),
lci = quantile(.value,LC),
uci = quantile(.value,UC),
sd = sd(.value),
prec = 1/var(.value),
trend = mean((exp(.value)-1)*100),
lci_trend = quantile((exp(.value)-1)*100,LC),
uci_trend = quantile((exp(.value)-1)*100,UC),
.groups = "keep")
slops_rand_int = inner_join(slopes_rand,interc,by = "s")
slops_rand_int$routeF = slops_rand_int$s
# spatial component of slope ----------------------------------------
beta_space_samples = posterior_samples(sl_rstan,"beta_space",
dims = "s")
slopes_space = beta_space_samples %>% group_by(s) %>%
summarise(b = mean(.value),
lci = quantile(.value,LC),
uci = quantile(.value,UC),
sd = sd(.value),
prec = 1/var(.value),
trend = mean((exp(.value)-1)*100),
lci_trend = quantile((exp(.value)-1)*100,LC),
uci_trend = quantile((exp(.value)-1)*100,UC),
.groups = "keep")
slops_space_int = inner_join(slopes_space,interc,by = "s")
slops_space_int$routeF = slops_space_int$s
# Compare spatial and random variation ------------------------------------
sdbeta_rand_tmp_samples <- posterior_samples(sl_rstan,
"sdbeta_rand")
sdbeta_space_tmp_samples <- posterior_samples(sl_rstan,
"sdbeta_space")
sdbeta_space_rand_tmp_samples <- bind_rows(sdbeta_rand_tmp_samples,
sdbeta_space_tmp_samples)
sdbeta_space_rand_tmp <- sdbeta_space_rand_tmp_samples %>%
group_by(.variable) %>%
summarise(mean = mean((.value)),
lci = quantile((.value),LC),
uci = quantile((.value),UC),
sd = sd((.value)),
.groups = "keep") %>%
mutate(species = species)
#combines all species estimates
sdbeta_space_rand <- bind_rows(sdbeta_space_rand,sdbeta_space_rand_tmp)
# difference rand-spatial -------------------------------------------------
sdbeta_space_tmp_samples <- sdbeta_space_tmp_samples %>%
rename(sd_space = .value) %>%
ungroup() %>%
select(-.variable)
sdbeta_rand_tmp_samples <- sdbeta_rand_tmp_samples %>%
rename(sd_rand = .value)%>%
ungroup() %>%
select(-.variable)
sdbeta_tmp_samples <- inner_join(sdbeta_rand_tmp_samples,sdbeta_space_tmp_samples)
sdbeta_tmp_dif <- sdbeta_tmp_samples %>%
group_by(.draw) %>%
summarise(dif = sd_rand-sd_space) %>%
ungroup() %>%
summarise(mean = mean((dif)),
lci = quantile((dif),LC),
uci = quantile((dif),UC),
sd = sd((dif))) %>%
mutate(species = species)
sdbeta_dif <- bind_rows(sdbeta_dif,sdbeta_tmp_dif)
# Route-level trajectories ------------------------------------------------
if(route_trajectories){
sdnoise_samples = posterior_samples(sl_rstan,"sdnoise")%>%
ungroup() %>%
select(.draw,.value) %>%
rename(sdnoise = .value)
sdobs_samples = posterior_samples(sl_rstan,"sdobs")%>%
ungroup() %>%
select(.draw,.value) %>%
rename(sdobs = .value)
beta_samples <- beta_samples %>%
ungroup() %>%
select(s,.draw,.value) %>%
rename(beta = .value)
alpha_samples <- alpha_samples %>%
ungroup() %>%
select(s,.draw,.value) %>%
rename(alpha = .value)
ab_samples <- inner_join(beta_samples,alpha_samples)
ab_samples <- ab_samples %>%
left_join(.,sdnoise_samples,by = ".draw") %>%
left_join(.,sdobs_samples,by = ".draw")
nyears = stan_data$nyears
fixedyear = stan_data$fixedyear
YEARS = c(min(jags_data$r_year):max(jags_data$r_year))
if(length(YEARS) != nyears){stop("years don't match YEARS =",length(YEARS),"nyears =",nyears)}
ind_fxn = function(a,b,sdn,sdob,y,fy){
i = exp(a + b*(y-fy) + (0.5*(sdn^2))+ (0.5*(sdob^2)))
return(i)
}
### this could be simplified to just estimate the start and end-years
i_samples = NULL
for(yr in 1:nyears){
i_t = ab_samples %>%
mutate(i = ind_fxn(alpha,beta,sdnoise,sdobs,yr,fixedyear),
y = yr,
year = YEARS[yr])
i_samples <- bind_rows(i_samples,i_t)
}