-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastar.py
233 lines (169 loc) · 6.86 KB
/
astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import math
import heapq
import time
from PIL import Image
heightmap = None
wetmap = None
# how many km is the map across
mapsize = 21
# total km range in heights on the map image
heightscale = .3
# extra multiplier to penalize elevation changes even more
# don't take this too high or it can't make a path, but if it's too low it will take a straight shot
elevation_weight = 60
def go():
global heightmap, wetmap
# open the image
with Image.open("sc.tif") as img:
with Image.open("sc_water.tif") as img_water:
# load in the heightmap
heightmap = Heightmap(img)
# load in the wetmap
wetmap = Wetmap(img_water)
# create the final rendering of the terrain
result = to3DImage(img, wetmap)
bestpath = None
bestlength = math.inf
# open up result pixels for writing
pixels = result.load()
# draw the optimal paths
for starty in range(0,heightmap.height,10):
print("Computing @ "+str(starty))
# perform the computation
path, length = astar(heightmap, wetmap, starty)
for c in path:
coords = idToCoords(heightmap.width, c)
pixels[coords[0], coords[1]] = (255, 128, 0)
if length < bestlength:
bestpath = path
bestlength = length
for c in bestpath:
coords = idToCoords(heightmap.width, c)
# draw with a 3x3 kernel
for i in range(coords[0] - 1, coords[0] + 2):
for j in range(coords[1] - 1, coords[1] + 2):
if 0 <= i < heightmap.width and 0 <= j < heightmap.width:
pixels[i, j] = (255, 0, 0)
# show the final image
result.show()
# print duration
# print("Took "+str(end-start)+" sec")
# cost function from any start coordinate to any end coordinate
def cost(hm, wm, start, end):
cst = hm.get3DDistance(start.x, start.y, end.x, end.y)
if wm.isWet(end.x, end.y):
cst *= 100
return cst
# estimate remaining distance from a given point to the right side of the world
def estimate(hm, wm, current):
return hm.get3DDistance(current.x, current.y, hm.width-1, current.y)
# trace the path from end to start
def buildPath(origins, current):
path = [current]
while current in origins:
current = origins[current]
path.insert(0, current)
return path
def idToCoords(hmw, id):
return (id % hmw, id // hmw)
# convert the heightmap into a more realistic representation of the terrain
def to3DImage(img, wetmap):
result = Image.new('RGB', (img.width, img.height), "black")
pixels = result.load()
for y in range(img.height):
for x in range(0,img.width-1):
if wetmap.isWet(x, y):
pixels[x, y] = (117, 178, 253)
else:
offset = 20*(img.getpixel((x+1,y)) - img.getpixel((x,y)))
offset = min(offset, 40)
color = (167 + offset, 197 + offset, 168 + offset)
pixels[x,y] = color
return result
def astar(hm, wm, starty):
start = Node(hm.width, 0, starty)
# create the heap
heap = []
heapq.heappush(heap, (estimate(hm, wm, start), start))
# stores where each reached cell was reached from
origins = {}
# stores g-scores (weight of path from start to current)
gs = {start.id: 0}
# stores f-scores (g + estimate weight to end)
fs = {start.id: estimate(hm, wm, start)}
while len(heap) > 0:
# gets the node with lowest f-score from the heap
current = heapq.heappop(heap)[1]
# print(current.x, current.y)
# if reached the goal
if current.x == hm.width-1:
return buildPath(origins, current.id), gs[current.id]
# iterate through the (usually) 8 neighboring cells
neighbors = current.getNeighbors()
for neighbor in neighbors:
# compute new g score
tg = gs[current.id] + cost(hm, wm, current, neighbor)
# if it's better than the current best g-score or is the first occurrence of that node, record it
if tg < gs.get(neighbor.id, math.inf) - 10:
# print(tg, gs.get(neighbor.id, math.inf))
# set new origin for the neighbor
origins[neighbor.id] = current.id
# write down g-score
gs[neighbor.id] = tg
# compute f-score
fs[neighbor.id] = gs[neighbor.id] + estimate(hm, wm, neighbor)
# add it to the heap for processing
if (fs[neighbor.id], neighbor) not in heap:
heapq.heappush(heap, (fs[neighbor.id], neighbor))
class Heightmap:
def __init__(self, img):
self.img = img
self.width = img.width
self.height = img.height
self.km_per_pix = mapsize / img.width
# gets the elevation of a coordinate in pixel units
def getElevation(self, x, y):
return (heightscale*self.img.getpixel((x, y))/255) / self.km_per_pix
# gets the pythagorean distance between 2 coordinates, factoring in elevation as well.
def get3DDistance(self, x1, y1, x2, y2):
# print(self.getElevation(x1, y1) - self.getElevation(x2, y2))
return (x1-x2) ** 2 + (y1-y2) ** 2 + (elevation_weight*(self.getElevation(x1, y1) - self.getElevation(x2, y2))) ** 2
def lerp(a, b, t):
return a + (b-a) * t
class Wetmap:
def __init__(self, img):
self.img = img
self.width = img.width
self.height = img.height
self.km_per_pix = mapsize / img.width
def isWet(self, x, y):
return self.img.getpixel((x,y))/255 > 0.5
class Node:
def __init__(self, hmw, x, y):
self.hmw = hmw
self.x = x
self.y = y
self.id = y * hmw + x
def getNeighbors(self):
neighbors = []
if self.x > 0:
neighbors.append(Node(self.hmw, self.x - 1, self.y))
if self.y > 0:
neighbors.append(Node(self.hmw, self.x - 1, self.y - 1))
if self.y < self.hmw - 1:
neighbors.append(Node(self.hmw, self.x - 1, self.y + 1))
if self.x < self.hmw - 1:
neighbors.append(Node(self.hmw, self.x + 1, self.y))
if self.y > 0:
neighbors.append(Node(self.hmw, self.x + 1, self.y - 1))
if self.y < self.hmw - 1:
neighbors.append(Node(self.hmw, self.x + 1, self.y + 1))
if self.y > 0:
neighbors.append(Node(self.hmw, self.x, self.y - 1))
if self.y < self.hmw - 1:
neighbors.append(Node(self.hmw, self.x, self.y + 1))
return neighbors
def __lt__(self, other):
return self.id < other.id
if __name__ == "__main__":
go()