-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
48 lines (36 loc) · 1.54 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from langchain.chat_models import ChatOpenAI
from langchain.schema.messages import HumanMessage, SystemMessage
from langchain.memory import ConversationBufferMemory
class RAG:
def __init__(self, system=None, ):
# LLM
self.llm = ChatOpenAI(temperature=0)
# k=10
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate(
messages=[
SystemMessagePromptTemplate.from_template(
"You are a assistant. Answer the questions based only on the provided context."
),
# The `variable_name` here is what must align with memory
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template("""
Context: {context}
Question: {question}
""")
]
)
def format_docs(docs):
return "\n\n".join([d.page_content for d in docs])
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
self.chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| self.llm
| StrOutputParser()
)
def infernce(self, prompt):
return self.chain.invoke(prompt)