-
Notifications
You must be signed in to change notification settings - Fork 7
/
521 Smallest prime factor -- v3.pl
61 lines (43 loc) · 1.39 KB
/
521 Smallest prime factor -- v3.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 20 July 2020
# https://github.com/trizen
# Smallest prime factor
# https://projecteuler.net/problem=521
# For each prime p < sqrt(n), we count how many integers k <= n have lpf(k) = p.
# We have G(n,p) = number of integers k <= n such that lpf(k) = p.
# G(n,p) can be evaluated recursively over primes q < p.
# Equivalently, G(n,p) is the number of p-rough numbers <= floor(n/p);
# There are t = floor(n/p) integers <= n that are divisible by p.
# From t we subtract the number integers that are divisible by smaller primes than p.
# The sum of the primes is p * G(n,p).
# When G(n,p) = 1, then G(n,p+r) = 1 for all r >= 1.
# Runtime: 2.5 seconds (when Kim Walisch's `primesum` tool is installed).
use 5.020;
use integer;
use ntheory qw(:all);
use Math::Sidef qw();
use experimental qw(signatures);
local $Sidef::Types::Number::Number::USE_PRIMESUM = 1;
my $MOD = 1e9;
sub S($n) {
my $sum = 0;
my $s = sqrtint($n);
forprimes {
$sum += mulmod($_, rough_count($n/$_, $_), $MOD);
} $s;
addmod($sum, Math::Sidef::sum_primes(next_prime($s), $n) % $MOD, $MOD);
}
say S(1e12);
__END__
S(10^1) = 28
S(10^2) = 1257
S(10^3) = 79189
S(10^4) = 5786451
S(10^5) = 455298741
S(10^6) = 37568404989
S(10^7) = 3203714961609
S(10^8) = 279218813374515
S(10^9) = 24739731010688477
S(10^10) = 2220827932427240957
S(10^11) = 201467219561892846337