-
Notifications
You must be signed in to change notification settings - Fork 7
/
704 Factors of Two in Binomial Coefficients.sf
56 lines (41 loc) · 1.34 KB
/
704 Factors of Two in Binomial Coefficients.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 02 March 2020
# https://github.com/trizen
# Factors of Two in Binomial Coefficients
# https://projecteuler.net/problem=704
# Runtime: 0.165s
# The maximal value of m for a given n-1, is given by:
# A053645(n) = n - 2^floor(log_2(n))
# The valuation of 2 in binomial(n-1,m), for the value of m defined above, is given by:
# A119387(n) = floor(log_2(n)) - valuation(n,2)
# Then the value of F(n) is given by:
# F(n) = A119387(n+1)
# To find S(n) = Sum_{k=1..n} F(k), we first define:
# A(n) = A061168(n) = Sum_{k=1..n} floor(log_2(k))
# B(n) = A011371(n) = Sum_{k=1..n} valuation(k,2)
# Then we have:
# S(n) = A(n+1) - B(n+1)
# For computing A(n) and B(n) efficiently, we have the following formulas:
# A(n) = (n+1)*floor(log_2(n)) - 2*(2^floor(log_2(n)) - 1)
# B(n) = n - hammingweight(n)
# See also:
# https://oeis.org/A053645
# https://oeis.org/A119387
# https://oeis.org/A061168
# https://oeis.org/A011371
func A(n) {
(n+1)*ilog2(n) - 2*(2**ilog2(n) - 1)
}
func B(n) {
n - hammingweight(n)
}
func S(n) {
A(n+1) - B(n+1)
}
say S(10**16)
__END__
S(10^(10^5)) = 3321898588...7585514573 (100006 digits)
S(10^(10^6)) = 3321925127...5321046359 (1000007 digits)
S(10^(10^7)) = 3321927796...6616569057 (10000008 digits)
S(10^(10^8)) = 3321928065...3266366113 (100000009 digits)