-
Notifications
You must be signed in to change notification settings - Fork 0
/
inception_predictC.py
67 lines (56 loc) · 2.09 KB
/
inception_predictC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# forked from Apache MXNet example with minor changes for osx
import time
import mxnet as mx
import numpy as np
import cv2, os, urllib
from collections import namedtuple
Batch = namedtuple('Batch', ['data'])
# Load the symbols for the networks
with open('synset.txt', 'r') as f:
synsets = [l.rstrip() for l in f]
# Load the network parameters
sym, arg_params, aux_params = mx.model.load_checkpoint('Inception-BN', 0)
# Load the network into an MXNet module and bind the corresponding parameters
mod = mx.mod.Module(symbol=sym, context=mx.cpu())
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))])
mod.set_params(arg_params, aux_params)
'''
Function to predict objects by giving the model a pointer to an image file and running a forward pass through the model.
inputs:
filename = jpeg file of image to classify objects in
mod = the module object representing the loaded model
synsets = the list of symbols representing the model
N = Optional parameter denoting how many predictions to return (default is top 5)
outputs:
python list of top N predicted objects and corresponding probabilities
'''
def predict(filename, mod, synsets, N=5):
tic = time.time()
img = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2RGB)
if img is None:
return None
img = cv2.resize(img, (224, 224))
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 1, 2)
img = img[np.newaxis, :]
toc = time.time()
mod.forward(Batch([mx.nd.array(img)]))
prob = mod.get_outputs()[0].asnumpy()
prob = np.squeeze(prob)
topN = []
a = np.argsort(prob)[::-1]
for i in a[0:N]:
topN.append((prob[i], synsets[i]))
return topN
# Code to download an image from the internet and run a prediction on it
def predict_from_url(url, N=5):
filename = url.split("/")[-1]
urllib.urlretrieve(url, filename)
img = cv2.imread(filename)
if img is None:
print( "Failed to download" )
else:
return predict(filename, mod, synsets, N)
# Code to predict on a local file
def predict_from_local_file(filename, N=5):
return predict(filename, mod, synsets, N)