-
Notifications
You must be signed in to change notification settings - Fork 33
/
visualize_SemanticKITTI.py
105 lines (93 loc) · 3.29 KB
/
visualize_SemanticKITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import os
import yaml
from utils.semkitti_vis.laserscan import SemLaserScan
from utils.semkitti_vis.laserscanvis import LaserScanVis
if __name__ == '__main__':
parser = argparse.ArgumentParser("./visualize.py")
parser.add_argument(
'--dataset', '-d',
type=str,
required=True,
help='Dataset to visualize. No Default',
)
parser.add_argument(
'--config', '-c',
type=str,
required=False,
default="utils/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--sequence', '-s',
type=str,
default="00",
required=False,
help='Sequence to visualize. Defaults to %(default)s',
)
parser.add_argument(
'--predictions', '-p',
type=str,
default=None,
required=False,
help='Alternate location for labels, to use predictions folder. '
'Must point to directory containing the predictions in the proper format '
' (see readme)'
'Defaults to %(default)s',
)
FLAGS, unparsed = parser.parse_known_args()
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Dataset", FLAGS.dataset)
print("Config", FLAGS.config)
print("Sequence", FLAGS.sequence)
print("Predictions", FLAGS.predictions)
print("*" * 80)
# open config file
print("Opening config file %s" % FLAGS.config)
CFG = yaml.safe_load(open(FLAGS.config, 'r'))
# fix sequence name
FLAGS.sequence = '{0:02d}'.format(int(FLAGS.sequence))
# does sequence folder exist?
scan_paths = os.path.join(FLAGS.dataset, FLAGS.sequence, "velodyne")
if os.path.isdir(scan_paths):
print("Sequence folder exists! Using sequence from %s" % scan_paths)
else:
print("Sequence folder doesn't exist! Exiting...")
quit()
# populate the pointclouds
scan_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(scan_paths)) for f in fn]
scan_names.sort()
# does sequence folder exist?
if FLAGS.predictions is not None:
label_paths = os.path.join(FLAGS.predictions, FLAGS.sequence, "predictions")
else:
label_paths = os.path.join(FLAGS.dataset, FLAGS.sequence, "labels")
if os.path.isdir(label_paths):
print("Labels folder exists! Using labels from %s" % label_paths)
else:
print("Labels folder doesn't exist! Exiting...")
quit()
# populate the pointclouds
label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn]
label_names.sort()
color_dict = CFG["color_map"]
nclasses = len(color_dict)
scan = SemLaserScan(nclasses, color_dict, project=True)
vis = LaserScanVis(scan=scan,
scan_names=scan_names,
label_names=label_names,
offset=0,
semantics=True, instances=False)
# print instructions
print("To navigate:")
print("\tb: back (previous scan)")
print("\tn: next (next scan)")
print("\tq: quit (exit program)")
# run the visualizer
vis.run()