forked from sgorsten/linalg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linalg.h
721 lines (652 loc) · 71 KB
/
linalg.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// linalg.h - 2.2-beta - Single-header public domain linear algebra library
//
// The intent of this library is to provide the bulk of the functionality
// you need to write programs that frequently use small, fixed-size vectors
// and matrices, in domains such as computational geometry or computer
// graphics. It strives for terse, readable source code.
//
// The original author of this software is Sterling Orsten, and its permanent
// home is <http://github.com/sgorsten/linalg/>. If you find this software
// useful, an acknowledgement in your source text and/or product documentation
// is appreciated, but not required.
//
// The author acknowledges significant insights and contributions by:
// Stan Melax <http://github.com/melax/>
// Dimitri Diakopoulos <http://github.com/ddiakopoulos/>
//
// Some features are deprecated. Define LINALG_FORWARD_COMPATIBLE to remove them.
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
//
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// For more information, please refer to <http://unlicense.org/>
#pragma once
#ifndef LINALG_H
#define LINALG_H
#include <cmath> // For various unary math functions, such as std::sqrt
#include <cstdlib> // To resolve std::abs ambiguity on clang
#include <cstdint> // For implementing namespace linalg::aliases
#include <array> // For std::array
#include <iosfwd> // For forward definitions of std::ostream
#include <type_traits> // For std::enable_if, std::is_same, std::declval
#include <functional> // For std::hash declaration
// In Visual Studio 2015, `constexpr` applied to a member function implies `const`, which causes ambiguous overload resolution
#if _MSC_VER <= 1900
#define LINALG_CONSTEXPR14
#else
#define LINALG_CONSTEXPR14 constexpr
#endif
namespace linalg
{
// Small, fixed-length vector type, consisting of exactly M elements of type T, and presumed to be a column-vector unless otherwise noted.
template<class T, int M> struct vec;
// Small, fixed-size matrix type, consisting of exactly M rows and N columns of type T, stored in column-major order.
template<class T, int M, int N> struct mat;
// Specialize converter<T,U> with a function application operator that converts type U to type T to enable implicit conversions
template<class T, class U> struct converter {};
namespace detail
{
template<class T, class U> using conv_t = typename std::enable_if<!std::is_same<T,U>::value, decltype(converter<T,U>{}(std::declval<U>()))>::type;
// Trait for retrieving scalar type of any linear algebra object
template<class A> struct scalar_type {};
template<class T, int M > struct scalar_type<vec<T,M >> { using type = T; };
template<class T, int M, int N> struct scalar_type<mat<T,M,N>> { using type = T; };
// Type returned by the compare(...) function which supports all six comparison operators against 0
template<class T> struct ord { T a,b; };
template<class T> constexpr bool operator == (const ord<T> & o, std::nullptr_t) { return o.a == o.b; }
template<class T> constexpr bool operator != (const ord<T> & o, std::nullptr_t) { return !(o.a == o.b); }
template<class T> constexpr bool operator < (const ord<T> & o, std::nullptr_t) { return o.a < o.b; }
template<class T> constexpr bool operator > (const ord<T> & o, std::nullptr_t) { return o.b < o.a; }
template<class T> constexpr bool operator <= (const ord<T> & o, std::nullptr_t) { return !(o.b < o.a); }
template<class T> constexpr bool operator >= (const ord<T> & o, std::nullptr_t) { return !(o.a < o.b); }
// Patterns which can be used with the compare(...) function
template<class A, class B> struct any_compare {};
template<class T> struct any_compare<vec<T,1>,vec<T,1>> { using type=ord<T>; constexpr ord<T> operator() (const vec<T,1> & a, const vec<T,1> & b) const { return ord<T>{a.x,b.x}; } };
template<class T> struct any_compare<vec<T,2>,vec<T,2>> { using type=ord<T>; constexpr ord<T> operator() (const vec<T,2> & a, const vec<T,2> & b) const { return !(a.x==b.x) ? ord<T>{a.x,b.x} : ord<T>{a.y,b.y}; } };
template<class T> struct any_compare<vec<T,3>,vec<T,3>> { using type=ord<T>; constexpr ord<T> operator() (const vec<T,3> & a, const vec<T,3> & b) const { return !(a.x==b.x) ? ord<T>{a.x,b.x} : !(a.y==b.y) ? ord<T>{a.y,b.y} : ord<T>{a.z,b.z}; } };
template<class T> struct any_compare<vec<T,4>,vec<T,4>> { using type=ord<T>; constexpr ord<T> operator() (const vec<T,4> & a, const vec<T,4> & b) const { return !(a.x==b.x) ? ord<T>{a.x,b.x} : !(a.y==b.y) ? ord<T>{a.y,b.y} : !(a.z==b.z) ? ord<T>{a.z,b.z} : ord<T>{a.w,b.w}; } };
template<class T, int M> struct any_compare<mat<T,M,1>,mat<T,M,1>> { using type=ord<T>; constexpr ord<T> operator() (const mat<T,M,1> & a, const mat<T,M,1> & b) const { return compare(a.x,b.x); } };
template<class T, int M> struct any_compare<mat<T,M,2>,mat<T,M,2>> { using type=ord<T>; constexpr ord<T> operator() (const mat<T,M,2> & a, const mat<T,M,2> & b) const { return a.x!=b.x ? compare(a.x,b.x) : compare(a.y,b.y); } };
template<class T, int M> struct any_compare<mat<T,M,3>,mat<T,M,3>> { using type=ord<T>; constexpr ord<T> operator() (const mat<T,M,3> & a, const mat<T,M,3> & b) const { return a.x!=b.x ? compare(a.x,b.x) : a.y!=b.y ? compare(a.y,b.y) : compare(a.z,b.z); } };
template<class T, int M> struct any_compare<mat<T,M,4>,mat<T,M,4>> { using type=ord<T>; constexpr ord<T> operator() (const mat<T,M,4> & a, const mat<T,M,4> & b) const { return a.x!=b.x ? compare(a.x,b.x) : a.y!=b.y ? compare(a.y,b.y) : a.z!=b.z ? compare(a.z,b.z) : compare(a.w,b.w); } };
// Helper for compile-time index-based access to members of vector and matrix types
template<int I> struct getter;
template<> struct getter<0> { template<class A> constexpr auto operator() (A & a) const -> decltype(a.x) { return a.x; } };
template<> struct getter<1> { template<class A> constexpr auto operator() (A & a) const -> decltype(a.y) { return a.y; } };
template<> struct getter<2> { template<class A> constexpr auto operator() (A & a) const -> decltype(a.z) { return a.z; } };
template<> struct getter<3> { template<class A> constexpr auto operator() (A & a) const -> decltype(a.w) { return a.w; } };
// Stand-in for std::integer_sequence/std::make_integer_sequence
template<int... I> struct seq {};
template<int A, int N> struct make_seq_impl;
template<int A> struct make_seq_impl<A,0> { using type=seq<>; };
template<int A> struct make_seq_impl<A,1> { using type=seq<A+0>; };
template<int A> struct make_seq_impl<A,2> { using type=seq<A+0,A+1>; };
template<int A> struct make_seq_impl<A,3> { using type=seq<A+0,A+1,A+2>; };
template<int A> struct make_seq_impl<A,4> { using type=seq<A+0,A+1,A+2,A+3>; };
template<int A, int B> using make_seq = typename make_seq_impl<A,B-A>::type;
template<class T, int M, int... I> vec<T,sizeof...(I)> constexpr swizzle(const vec<T,M> & v, seq<I...> i) { return {getter<I>{}(v)...}; }
template<class T, int M, int N, int... I, int... J> mat<T,sizeof...(I),sizeof...(J)> constexpr swizzle(const mat<T,M,N> & m, seq<I...> i, seq<J...> j) { return {swizzle(getter<J>{}(m),i)...}; }
// SFINAE helpers to determine result of function application
template<class F, class... T> using ret_t = decltype(std::declval<F>()(std::declval<T>()...));
// SFINAE helper which is defined if all provided types are scalars
struct empty {};
template<class... T> struct scalars;
template<> struct scalars<> { using type=void; };
template<class T, class... U> struct scalars<T,U...> : std::conditional<std::is_arithmetic<T>::value, scalars<U...>, empty>::type {};
template<class... T> using scalars_t = typename scalars<T...>::type;
// Helpers which indicate how apply(F, ...) should be called for various arguments
template<class F, class Void, class... T> struct apply {}; // Patterns which contain only vectors or scalars
template<class F, int M, class A > struct apply<F, scalars_t< >, vec<A,M> > { using type=vec<ret_t<F,A >,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a ) { return {f(getter<I>{}(a) )...}; } };
template<class F, int M, class A, class B > struct apply<F, scalars_t< >, vec<A,M>, vec<B,M> > { using type=vec<ret_t<F,A,B >,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, const vec<B,M> & b ) { return {f(getter<I>{}(a), getter<I>{}(b) )...}; } };
template<class F, int M, class A, class B > struct apply<F, scalars_t<B >, vec<A,M>, B > { using type=vec<ret_t<F,A,B >,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, B b ) { return {f(getter<I>{}(a), b )...}; } };
template<class F, int M, class A, class B > struct apply<F, scalars_t<A >, A, vec<B,M> > { using type=vec<ret_t<F,A,B >,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, A a, const vec<B,M> & b ) { return {f(a, getter<I>{}(b) )...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t< >, vec<A,M>, vec<B,M>, vec<C,M>> { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, const vec<B,M> & b, const vec<C,M> & c) { return {f(getter<I>{}(a), getter<I>{}(b), getter<I>{}(c))...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<C >, vec<A,M>, vec<B,M>, C > { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, const vec<B,M> & b, C c) { return {f(getter<I>{}(a), getter<I>{}(b), c )...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<B >, vec<A,M>, B, vec<C,M>> { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, B b, const vec<C,M> & c) { return {f(getter<I>{}(a), b, getter<I>{}(c))...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<B,C>, vec<A,M>, B, C > { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, const vec<A,M> & a, B b, C c) { return {f(getter<I>{}(a), b, c )...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<A >, A, vec<B,M>, vec<C,M>> { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, A a, const vec<B,M> & b, const vec<C,M> & c) { return {f(a, getter<I>{}(b), getter<I>{}(c))...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<A,C>, A, vec<B,M>, C > { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, A a, const vec<B,M> & b, C c) { return {f(a, getter<I>{}(b), c )...}; } };
template<class F, int M, class A, class B, class C> struct apply<F, scalars_t<A,B>, A, B, vec<C,M>> { using type=vec<ret_t<F,A,B,C>,M>; enum {size=M, mm=0}; template<int... I> static constexpr type impl(seq<I...>, F f, A a, B b, const vec<C,M> & c) { return {f(a, b, getter<I>{}(c))...}; } };
template<class F, int M, int N, class A > struct apply<F, scalars_t< >, mat<A,M,N> > { using type=mat<ret_t<F,A >,M,N>; enum {size=N, mm=0}; template<int... J> static constexpr type impl(seq<J...>, F f, const mat<A,M,N> & a ) { return {apply<F, void, vec<A,M> >::impl(make_seq<0,M>{}, f, getter<J>{}(a) )...}; } };
template<class F, int M, int N, class A, class B> struct apply<F, scalars_t< >, mat<A,M,N>, mat<B,M,N>> { using type=mat<ret_t<F,A,B>,M,N>; enum {size=N, mm=1}; template<int... J> static constexpr type impl(seq<J...>, F f, const mat<A,M,N> & a, const mat<B,M,N> & b) { return {apply<F, void, vec<A,M>, vec<B,M>>::impl(make_seq<0,M>{}, f, getter<J>{}(a), getter<J>{}(b))...}; } };
template<class F, int M, int N, class A, class B> struct apply<F, scalars_t<B>, mat<A,M,N>, B > { using type=mat<ret_t<F,A,B>,M,N>; enum {size=N, mm=0}; template<int... J> static constexpr type impl(seq<J...>, F f, const mat<A,M,N> & a, B b) { return {apply<F, void, vec<A,M>, B >::impl(make_seq<0,M>{}, f, getter<J>{}(a), b )...}; } };
template<class F, int M, int N, class A, class B> struct apply<F, scalars_t<A>, A, mat<B,M,N>> { using type=mat<ret_t<F,A,B>,M,N>; enum {size=N, mm=0}; template<int... J> static constexpr type impl(seq<J...>, F f, A a, const mat<B,M,N> & b) { return {apply<F, void, A, vec<B,M>>::impl(make_seq<0,M>{}, f, a, getter<J>{}(b))...}; } };
template<class F, class... A> struct apply<F, scalars_t<A...>, A...> { using type = ret_t<F,A...>; enum {size=0, mm=0}; static constexpr type impl(seq<>, F f, A... a) { return f(a...); } };
// Function objects for selecting between alternatives
struct min { template<class A, class B> constexpr auto operator() (A a, B b) const -> typename std::remove_reference<decltype(a<b ? a : b)>::type { return a<b ? a : b; } };
struct max { template<class A, class B> constexpr auto operator() (A a, B b) const -> typename std::remove_reference<decltype(a<b ? b : a)>::type { return a<b ? b : a; } };
struct clamp { template<class A, class B, class C> constexpr auto operator() (A a, B b, C c) const -> typename std::remove_reference<decltype(a<b ? b : a<c ? a : c)>::type { return a<b ? b : a<c ? a : c; } };
struct select { template<class A, class B, class C> constexpr auto operator() (A a, B b, C c) const -> typename std::remove_reference<decltype(a ? b : c)>::type { return a ? b : c; } };
struct lerp { template<class A, class B, class C> constexpr auto operator() (A a, B b, C c) const -> decltype(a*(1-c) + b*c) { return a*(1-c) + b*c; } };
// Function objects for applying operators
struct op_pos { template<class A> constexpr auto operator() (A a) const -> decltype(+a) { return +a; } };
struct op_neg { template<class A> constexpr auto operator() (A a) const -> decltype(-a) { return -a; } };
struct op_not { template<class A> constexpr auto operator() (A a) const -> decltype(!a) { return !a; } };
struct op_cmp { template<class A> constexpr auto operator() (A a) const -> decltype(~(a)) { return ~a; } };
struct op_mul { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a * b) { return a * b; } };
struct op_div { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a / b) { return a / b; } };
struct op_mod { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a % b) { return a % b; } };
struct op_add { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a + b) { return a + b; } };
struct op_sub { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a - b) { return a - b; } };
struct op_lsh { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a << b) { return a << b; } };
struct op_rsh { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a >> b) { return a >> b; } };
struct op_lt { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a < b) { return a < b; } };
struct op_gt { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a > b) { return a > b; } };
struct op_le { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a <= b) { return a <= b; } };
struct op_ge { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a >= b) { return a >= b; } };
struct op_eq { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a == b) { return a == b; } };
struct op_ne { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a != b) { return a != b; } };
struct op_int { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a & b) { return a & b; } };
struct op_xor { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a ^ b) { return a ^ b; } };
struct op_un { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a | b) { return a | b; } };
struct op_and { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a && b) { return a && b; } };
struct op_or { template<class A, class B> constexpr auto operator() (A a, B b) const -> decltype(a || b) { return a || b; } };
// Function objects for applying standard library math functions
struct std_abs { template<class A> auto operator() (A a) const -> decltype(std::abs (a)) { return std::abs (a); } };
struct std_floor { template<class A> auto operator() (A a) const -> decltype(std::floor(a)) { return std::floor(a); } };
struct std_ceil { template<class A> auto operator() (A a) const -> decltype(std::ceil (a)) { return std::ceil (a); } };
struct std_exp { template<class A> auto operator() (A a) const -> decltype(std::exp (a)) { return std::exp (a); } };
struct std_log { template<class A> auto operator() (A a) const -> decltype(std::log (a)) { return std::log (a); } };
struct std_log10 { template<class A> auto operator() (A a) const -> decltype(std::log10(a)) { return std::log10(a); } };
struct std_sqrt { template<class A> auto operator() (A a) const -> decltype(std::sqrt (a)) { return std::sqrt (a); } };
struct std_sin { template<class A> auto operator() (A a) const -> decltype(std::sin (a)) { return std::sin (a); } };
struct std_cos { template<class A> auto operator() (A a) const -> decltype(std::cos (a)) { return std::cos (a); } };
struct std_tan { template<class A> auto operator() (A a) const -> decltype(std::tan (a)) { return std::tan (a); } };
struct std_asin { template<class A> auto operator() (A a) const -> decltype(std::asin (a)) { return std::asin (a); } };
struct std_acos { template<class A> auto operator() (A a) const -> decltype(std::acos (a)) { return std::acos (a); } };
struct std_atan { template<class A> auto operator() (A a) const -> decltype(std::atan (a)) { return std::atan (a); } };
struct std_sinh { template<class A> auto operator() (A a) const -> decltype(std::sinh (a)) { return std::sinh (a); } };
struct std_cosh { template<class A> auto operator() (A a) const -> decltype(std::cosh (a)) { return std::cosh (a); } };
struct std_tanh { template<class A> auto operator() (A a) const -> decltype(std::tanh (a)) { return std::tanh (a); } };
struct std_round { template<class A> auto operator() (A a) const -> decltype(std::round(a)) { return std::round(a); } };
struct std_fmod { template<class A, class B> auto operator() (A a, B b) const -> decltype(std::fmod (a, b)) { return std::fmod (a, b); } };
struct std_pow { template<class A, class B> auto operator() (A a, B b) const -> decltype(std::pow (a, b)) { return std::pow (a, b); } };
struct std_atan2 { template<class A, class B> auto operator() (A a, B b) const -> decltype(std::atan2 (a, b)) { return std::atan2 (a, b); } };
struct std_copysign { template<class A, class B> auto operator() (A a, B b) const -> decltype(std::copysign(a, b)) { return std::copysign(a, b); } };
}
// Small, fixed-length vector type, consisting of exactly M elements of type T, and presumed to be a column-vector unless otherwise noted
template<class T> struct vec<T,1>
{
T x;
constexpr vec() : x() {}
constexpr vec(const T & x_) : x(x_) {}
// NOTE: vec<T,1> does NOT have a constructor from pointer, this can conflict with initializing its single element from zero
template<class U>
constexpr explicit vec(const vec<U,1> & v) : vec(static_cast<T>(v.x)) {}
constexpr const T & operator[] (int i) const { return x; }
LINALG_CONSTEXPR14 T & operator[] (int i) { return x; }
template<class U, class=detail::conv_t<vec,U>> constexpr vec(const U & u) : vec(converter<vec,U>{}(u)) {}
template<class U, class=detail::conv_t<U,vec>> constexpr operator U () const { return converter<U,vec>{}(*this); }
};
template<class T> struct vec<T,2>
{
T x,y;
constexpr vec() : x(), y() {}
constexpr vec(const T & x_, const T & y_) : x(x_), y(y_) {}
constexpr explicit vec(const T & s) : vec(s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1]) {}
template<class U>
constexpr explicit vec(const vec<U,2> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y)) {}
constexpr const T & operator[] (int i) const { return i==0?x:y; }
LINALG_CONSTEXPR14 T & operator[] (int i) { return i==0?x:y; }
template<class U, class=detail::conv_t<vec,U>> constexpr vec(const U & u) : vec(converter<vec,U>{}(u)) {}
template<class U, class=detail::conv_t<U,vec>> constexpr operator U () const { return converter<U,vec>{}(*this); }
};
template<class T> struct vec<T,3>
{
T x,y,z;
constexpr vec() : x(), y(), z() {}
constexpr vec(const T & x_, const T & y_,
const T & z_) : x(x_), y(y_), z(z_) {}
constexpr vec(const vec<T,2> & xy,
const T & z_) : vec(xy.x, xy.y, z_) {}
constexpr explicit vec(const T & s) : vec(s, s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1], p[2]) {}
template<class U>
constexpr explicit vec(const vec<U,3> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y), static_cast<T>(v.z)) {}
constexpr const T & operator[] (int i) const { return i==0?x:i==1?y:z; }
LINALG_CONSTEXPR14 T & operator[] (int i) { return i==0?x:i==1?y:z; }
constexpr const vec<T,2> & xy() const { return *reinterpret_cast<const vec<T,2> *>(this); }
vec<T,2> & xy() { return *reinterpret_cast<vec<T,2> *>(this); }
template<class U, class=detail::conv_t<vec,U>> constexpr vec(const U & u) : vec(converter<vec,U>{}(u)) {}
template<class U, class=detail::conv_t<U,vec>> constexpr operator U () const { return converter<U,vec>{}(*this); }
};
template<class T> struct vec<T,4>
{
T x,y,z,w;
constexpr vec() : x(), y(), z(), w() {}
constexpr vec(const T & x_, const T & y_,
const T & z_, const T & w_) : x(x_), y(y_), z(z_), w(w_) {}
constexpr vec(const vec<T,2> & xy,
const T & z_, const T & w_) : vec(xy.x, xy.y, z_, w_) {}
constexpr vec(const vec<T,3> & xyz,
const T & w_) : vec(xyz.x, xyz.y, xyz.z, w_) {}
constexpr explicit vec(const T & s) : vec(s, s, s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1], p[2], p[3]) {}
template<class U>
constexpr explicit vec(const vec<U,4> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y), static_cast<T>(v.z), static_cast<T>(v.w)) {}
constexpr const T & operator[] (int i) const { return i==0?x:i==1?y:i==2?z:w; }
LINALG_CONSTEXPR14 T & operator[] (int i) { return i==0?x:i==1?y:i==2?z:w; }
constexpr const vec<T,2> & xy() const { return *reinterpret_cast<const vec<T,2> *>(this); }
constexpr const vec<T,3> & xyz() const { return *reinterpret_cast<const vec<T,3> *>(this); }
vec<T,2> & xy() { return *reinterpret_cast<vec<T,2> *>(this); }
vec<T,3> & xyz() { return *reinterpret_cast<vec<T,3> *>(this); }
template<class U, class=detail::conv_t<vec,U>> constexpr vec(const U & u) : vec(converter<vec,U>{}(u)) {}
template<class U, class=detail::conv_t<U,vec>> constexpr operator U () const { return converter<U,vec>{}(*this); }
};
// Small, fixed-size matrix type, consisting of exactly M rows and N columns of type T, stored in column-major order.
template<class T, int M> struct mat<T,M,1>
{
typedef vec<T,M> V;
V x;
constexpr mat() : x() {}
constexpr mat(const V & x_) : x(x_) {}
constexpr explicit mat(const T & s) : x(s) {}
constexpr explicit mat(const T * p) : x(p+M*0) {}
template<class U>
constexpr explicit mat(const mat<U,M,1> & m) : mat(V(m.x)) {}
constexpr vec<T,1> row(int i) const { return {x[i]}; }
constexpr const V & operator[] (int j) const { return x; }
LINALG_CONSTEXPR14 V & operator[] (int j) { return x; }
template<class U, class=detail::conv_t<mat,U>> constexpr mat(const U & u) : mat(converter<mat,U>{}(u)) {}
template<class U, class=detail::conv_t<U,mat>> constexpr operator U () const { return converter<U,mat>{}(*this); }
};
template<class T, int M> struct mat<T,M,2>
{
typedef vec<T,M> V;
V x,y;
constexpr mat() : x(), y() {}
constexpr mat(const V & x_, const V & y_) : x(x_), y(y_) {}
constexpr explicit mat(const T & s) : x(s), y(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1) {}
template<class U>
constexpr explicit mat(const mat<U,M,2> & m) : mat(V(m.x), V(m.y)) {}
constexpr vec<T,2> row(int i) const { return {x[i], y[i]}; }
constexpr const V & operator[] (int j) const { return j==0?x:y; }
LINALG_CONSTEXPR14 V & operator[] (int j) { return j==0?x:y; }
template<class U, class=detail::conv_t<mat,U>> constexpr mat(const U & u) : mat(converter<mat,U>{}(u)) {}
template<class U, class=detail::conv_t<U,mat>> constexpr operator U () const { return converter<U,mat>{}(*this); }
};
template<class T, int M> struct mat<T,M,3>
{
typedef vec<T,M> V;
V x,y,z;
constexpr mat() : x(), y(), z() {}
constexpr mat(const V & x_, const V & y_,
const V & z_) : x(x_), y(y_), z(z_) {}
constexpr explicit mat(const T & s) : x(s), y(s), z(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1), z(p+M*2) {}
template<class U>
constexpr explicit mat(const mat<U,M,3> & m) : mat(V(m.x), V(m.y), V(m.z)) {}
constexpr vec<T,3> row(int i) const { return {x[i], y[i], z[i]}; }
constexpr const V & operator[] (int j) const { return j==0?x:j==1?y:z; }
LINALG_CONSTEXPR14 V & operator[] (int j) { return j==0?x:j==1?y:z; }
template<class U, class=detail::conv_t<mat,U>> constexpr mat(const U & u) : mat(converter<mat,U>{}(u)) {}
template<class U, class=detail::conv_t<U,mat>> constexpr operator U () const { return converter<U,mat>{}(*this); }
};
template<class T, int M> struct mat<T,M,4>
{
typedef vec<T,M> V;
V x,y,z,w;
constexpr mat() : x(), y(), z(), w() {}
constexpr mat(const V & x_, const V & y_,
const V & z_, const V & w_) : x(x_), y(y_), z(z_), w(w_) {}
constexpr explicit mat(const T & s) : x(s), y(s), z(s), w(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1), z(p+M*2), w(p+M*3) {}
template<class U>
constexpr explicit mat(const mat<U,M,4> & m) : mat(V(m.x), V(m.y), V(m.z), V(m.w)) {}
constexpr vec<T,4> row(int i) const { return {x[i], y[i], z[i], w[i]}; }
constexpr const V & operator[] (int j) const { return j==0?x:j==1?y:j==2?z:w; }
LINALG_CONSTEXPR14 V & operator[] (int j) { return j==0?x:j==1?y:j==2?z:w; }
template<class U, class=detail::conv_t<mat,U>> constexpr mat(const U & u) : mat(converter<mat,U>{}(u)) {}
template<class U, class=detail::conv_t<U,mat>> constexpr operator U () const { return converter<U,mat>{}(*this); }
};
// Define a type which will convert to the multiplicative identity of any square matrix
struct identity_t { constexpr explicit identity_t(int) {} };
template<class T> struct converter<mat<T,1,1>, identity_t> { constexpr mat<T,1,1> operator() (identity_t) const { return {vec<T,1>{1}}; } };
template<class T> struct converter<mat<T,2,2>, identity_t> { constexpr mat<T,2,2> operator() (identity_t) const { return {{1,0},{0,1}}; } };
template<class T> struct converter<mat<T,3,3>, identity_t> { constexpr mat<T,3,3> operator() (identity_t) const { return {{1,0,0},{0,1,0},{0,0,1}}; } };
template<class T> struct converter<mat<T,4,4>, identity_t> { constexpr mat<T,4,4> operator() (identity_t) const { return {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; } };
constexpr identity_t identity {1};
// Produce a scalar by applying f(A,B) -> A to adjacent pairs of elements from a vec/mat in left-to-right/column-major order (matching the associativity of arithmetic and logical operators)
template<class F, class A, class B> constexpr A fold(F f, A a, const vec<B,1> & b) { return f(a, b.x); }
template<class F, class A, class B> constexpr A fold(F f, A a, const vec<B,2> & b) { return f(f(a, b.x), b.y); }
template<class F, class A, class B> constexpr A fold(F f, A a, const vec<B,3> & b) { return f(f(f(a, b.x), b.y), b.z); }
template<class F, class A, class B> constexpr A fold(F f, A a, const vec<B,4> & b) { return f(f(f(f(a, b.x), b.y), b.z), b.w); }
template<class F, class A, class B, int M> constexpr A fold(F f, A a, const mat<B,M,1> & b) { return fold(f, a, b.x); }
template<class F, class A, class B, int M> constexpr A fold(F f, A a, const mat<B,M,2> & b) { return fold(f, fold(f, a, b.x), b.y); }
template<class F, class A, class B, int M> constexpr A fold(F f, A a, const mat<B,M,3> & b) { return fold(f, fold(f, fold(f, a, b.x), b.y), b.z); }
template<class F, class A, class B, int M> constexpr A fold(F f, A a, const mat<B,M,4> & b) { return fold(f, fold(f, fold(f, fold(f, a, b.x), b.y), b.z), b.w); }
// Type aliases for the result of calling apply(...) with various arguments, can be used with return type SFINAE to constrian overload sets
template<class F, class... A> using apply_t = typename detail::apply<F,void,A...>::type;
template<class F, class... A> using mm_apply_t = typename std::enable_if<detail::apply<F,void,A...>::mm, apply_t<F,A...>>::type;
template<class F, class... A> using no_mm_apply_t = typename std::enable_if<!detail::apply<F,void,A...>::mm, apply_t<F,A...>>::type;
template<class A> using scalar_t = typename detail::scalar_type<A>::type; // Underlying scalar type when performing elementwise operations
// apply(f,...) applies the provided function in an elementwise fashion to its arguments, producing an object of the same dimensions
template<class F, class... A> constexpr apply_t<F,A...> apply(F func, const A & ... args) { return detail::apply<F,void,A...>::impl(detail::make_seq<0,detail::apply<F,void,A...>::size>{}, func, args...); }
// map(a,f) is equivalent to apply(f,a)
template<class A, class F> constexpr apply_t<F,A> map(const A & a, F func) { return apply(func, a); }
// zip(a,b,f) is equivalent to apply(f,a,b)
template<class A, class B, class F> constexpr apply_t<F,A,B> zip(const A & a, const B & b, F func) { return apply(func, a, b); }
// Relational operators are defined to compare the elements of two vectors or matrices lexicographically, in column-major order
template<class A, class B> constexpr typename detail::any_compare<A,B>::type compare(const A & a, const B & b) { return detail::any_compare<A,B>()(a,b); }
template<class A, class B> constexpr auto operator == (const A & a, const B & b) -> decltype(compare(a,b) == 0) { return compare(a,b) == 0; }
template<class A, class B> constexpr auto operator != (const A & a, const B & b) -> decltype(compare(a,b) != 0) { return compare(a,b) != 0; }
template<class A, class B> constexpr auto operator < (const A & a, const B & b) -> decltype(compare(a,b) < 0) { return compare(a,b) < 0; }
template<class A, class B> constexpr auto operator > (const A & a, const B & b) -> decltype(compare(a,b) > 0) { return compare(a,b) > 0; }
template<class A, class B> constexpr auto operator <= (const A & a, const B & b) -> decltype(compare(a,b) <= 0) { return compare(a,b) <= 0; }
template<class A, class B> constexpr auto operator >= (const A & a, const B & b) -> decltype(compare(a,b) >= 0) { return compare(a,b) >= 0; }
// Functions for coalescing scalar values
template<class A> constexpr bool any (const A & a) { return fold(detail::op_or{}, false, a); }
template<class A> constexpr bool all (const A & a) { return fold(detail::op_and{}, true, a); }
template<class A> constexpr scalar_t<A> sum (const A & a) { return fold(detail::op_add{}, scalar_t<A>(0), a); }
template<class A> constexpr scalar_t<A> product(const A & a) { return fold(detail::op_mul{}, scalar_t<A>(1), a); }
template<class A> constexpr scalar_t<A> minelem(const A & a) { return fold(detail::min{}, a.x, a); }
template<class A> constexpr scalar_t<A> maxelem(const A & a) { return fold(detail::max{}, a.x, a); }
template<class T, int M> int argmin(const vec<T,M> & a) { int j=0; for(int i=1; i<M; ++i) if(a[i] < a[j]) j = i; return j; }
template<class T, int M> int argmax(const vec<T,M> & a) { int j=0; for(int i=1; i<M; ++i) if(a[i] > a[j]) j = i; return j; }
// Unary operators are defined component-wise for linalg types
template<class A> constexpr apply_t<detail::op_pos, A> operator + (const A & a) { return apply(detail::op_pos{}, a); }
template<class A> constexpr apply_t<detail::op_neg, A> operator - (const A & a) { return apply(detail::op_neg{}, a); }
template<class A> constexpr apply_t<detail::op_cmp, A> operator ~ (const A & a) { return apply(detail::op_cmp{}, a); }
template<class A> constexpr apply_t<detail::op_not, A> operator ! (const A & a) { return apply(detail::op_not{}, a); }
// Binary operators are defined component-wise for linalg types, EXCEPT for `operator *`
template<class A, class B> constexpr apply_t<detail::op_add, A, B> operator + (const A & a, const B & b) { return apply(detail::op_add{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_sub, A, B> operator - (const A & a, const B & b) { return apply(detail::op_sub{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_mul, A, B> cmul (const A & a, const B & b) { return apply(detail::op_mul{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_div, A, B> operator / (const A & a, const B & b) { return apply(detail::op_div{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_mod, A, B> operator % (const A & a, const B & b) { return apply(detail::op_mod{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_un, A, B> operator | (const A & a, const B & b) { return apply(detail::op_un{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_xor, A, B> operator ^ (const A & a, const B & b) { return apply(detail::op_xor{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_int, A, B> operator & (const A & a, const B & b) { return apply(detail::op_int{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_lsh, A, B> operator << (const A & a, const B & b) { return apply(detail::op_lsh{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_rsh, A, B> operator >> (const A & a, const B & b) { return apply(detail::op_rsh{}, a, b); }
// Binary `operator *` was originally defined component-wise for all patterns, in a fashion consistent with the other operators. However,
// this was one of the most frequent sources of confusion among new users of this library, with the binary `operator *` being used accidentally
// by users who INTENDED the semantics of the algebraic matrix product, but RECEIVED the semantics of the Hadamard product. While there is
// precedent within the HLSL, Fortran, R, APL, J, and Mathematica programming languages for `operator *` having the semantics of the Hadamard
// product between matrices, it is counterintuitive to users of GLSL, Eigen, and many other languages and libraries that chose matrix product
// semantics for `operator *`.
//
// For these reasons, binary `operator *` is now DEPRECATED between pairs of matrices. Users may call `cmul(...)` for component-wise multiplication,
// or `mul(...)` for matrix multiplication. Binary `operator *` continues to be available for vector * vector, vector * scalar, matrix * scalar, etc.
template<class A, class B> constexpr no_mm_apply_t<detail::op_mul, A, B> operator * (const A & a, const B & b) { return cmul(a,b); }
#ifndef LINALG_FORWARD_COMPATIBLE
template<class A, class B> [[deprecated("`operator *` between pairs of matrices is deprecated. See the source text for details.")]] constexpr mm_apply_t<detail::op_mul, A, B> operator * (const A & a, const B & b) { return cmul(a,b); }
#endif
// Binary assignment operators a $= b is always defined as though it were explicitly written a = a $ b
template<class A, class B> constexpr auto operator += (A & a, const B & b) -> decltype(a = a + b) { return a = a + b; }
template<class A, class B> constexpr auto operator -= (A & a, const B & b) -> decltype(a = a - b) { return a = a - b; }
template<class A, class B> constexpr auto operator *= (A & a, const B & b) -> decltype(a = a * b) { return a = a * b; }
template<class A, class B> constexpr auto operator /= (A & a, const B & b) -> decltype(a = a / b) { return a = a / b; }
template<class A, class B> constexpr auto operator %= (A & a, const B & b) -> decltype(a = a % b) { return a = a % b; }
template<class A, class B> constexpr auto operator |= (A & a, const B & b) -> decltype(a = a | b) { return a = a | b; }
template<class A, class B> constexpr auto operator ^= (A & a, const B & b) -> decltype(a = a ^ b) { return a = a ^ b; }
template<class A, class B> constexpr auto operator &= (A & a, const B & b) -> decltype(a = a & b) { return a = a & b; }
template<class A, class B> constexpr auto operator <<= (A & a, const B & b) -> decltype(a = a << b) { return a = a << b; }
template<class A, class B> constexpr auto operator >>= (A & a, const B & b) -> decltype(a = a >> b) { return a = a >> b; }
// Swizzles and subobjects
template<int... I, class T, int M> constexpr vec<T,sizeof...(I)> swizzle(const vec<T,M> & a) { return {detail::getter<I>{}(a)...}; }
template<int I0, int I1, class T, int M> constexpr vec<T,I1-I0> subvec (const vec<T,M> & a) { return detail::swizzle(a, detail::make_seq<I0,I1>{}); }
template<int I0, int J0, int I1, int J1, class T, int M, int N> constexpr mat<T,I1-I0,J1-J0> submat (const mat<T,M,N> & a) { return detail::swizzle(a, detail::make_seq<I0,I1>{}, detail::make_seq<J0,J1>{}); }
// Component-wise standard library math functions
template<class A> apply_t<detail::std_abs, A> abs (const A & a) { return apply(detail::std_abs{}, a); }
template<class A> apply_t<detail::std_floor, A> floor(const A & a) { return apply(detail::std_floor{}, a); }
template<class A> apply_t<detail::std_ceil, A> ceil (const A & a) { return apply(detail::std_ceil{}, a); }
template<class A> apply_t<detail::std_exp, A> exp (const A & a) { return apply(detail::std_exp{}, a); }
template<class A> apply_t<detail::std_log, A> log (const A & a) { return apply(detail::std_log{}, a); }
template<class A> apply_t<detail::std_log10, A> log10(const A & a) { return apply(detail::std_log10{}, a); }
template<class A> apply_t<detail::std_sqrt, A> sqrt (const A & a) { return apply(detail::std_sqrt{}, a); }
template<class A> apply_t<detail::std_sin, A> sin (const A & a) { return apply(detail::std_sin{}, a); }
template<class A> apply_t<detail::std_cos, A> cos (const A & a) { return apply(detail::std_cos{}, a); }
template<class A> apply_t<detail::std_tan, A> tan (const A & a) { return apply(detail::std_tan{}, a); }
template<class A> apply_t<detail::std_asin, A> asin (const A & a) { return apply(detail::std_asin{}, a); }
template<class A> apply_t<detail::std_acos, A> acos (const A & a) { return apply(detail::std_acos{}, a); }
template<class A> apply_t<detail::std_atan, A> atan (const A & a) { return apply(detail::std_atan{}, a); }
template<class A> apply_t<detail::std_sinh, A> sinh (const A & a) { return apply(detail::std_sinh{}, a); }
template<class A> apply_t<detail::std_cosh, A> cosh (const A & a) { return apply(detail::std_cosh{}, a); }
template<class A> apply_t<detail::std_tanh, A> tanh (const A & a) { return apply(detail::std_tanh{}, a); }
template<class A> apply_t<detail::std_round, A> round(const A & a) { return apply(detail::std_round{}, a); }
template<class A, class B> apply_t<detail::std_fmod, A, B> fmod (const A & a, const B & b) { return apply(detail::std_fmod{}, a, b); }
template<class A, class B> apply_t<detail::std_pow, A, B> pow (const A & a, const B & b) { return apply(detail::std_pow{}, a, b); }
template<class A, class B> apply_t<detail::std_atan2, A, B> atan2 (const A & a, const B & b) { return apply(detail::std_atan2{}, a, b); }
template<class A, class B> apply_t<detail::std_copysign, A, B> copysign(const A & a, const B & b) { return apply(detail::std_copysign{}, a, b); }
// Component-wise relational functions on vectors
template<class A, class B> constexpr apply_t<detail::op_eq, A, B> equal (const A & a, const B & b) { return apply(detail::op_eq{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_ne, A, B> nequal (const A & a, const B & b) { return apply(detail::op_ne{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_lt, A, B> less (const A & a, const B & b) { return apply(detail::op_lt{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_gt, A, B> greater(const A & a, const B & b) { return apply(detail::op_gt{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_le, A, B> lequal (const A & a, const B & b) { return apply(detail::op_le{}, a, b); }
template<class A, class B> constexpr apply_t<detail::op_ge, A, B> gequal (const A & a, const B & b) { return apply(detail::op_ge{}, a, b); }
// Component-wise selection functions on vectors
template<class A, class B> constexpr apply_t<detail::min, A, B> min(const A & a, const B & b) { return apply(detail::min{}, a, b); }
template<class A, class B> constexpr apply_t<detail::max, A, B> max(const A & a, const B & b) { return apply(detail::max{}, a, b); }
template<class X, class L, class H> constexpr apply_t<detail::clamp, X, L, H> clamp (const X & x, const L & l, const H & h) { return apply(detail::clamp{}, x, l, h); }
template<class P, class A, class B> constexpr apply_t<detail::select, P, A, B> select(const P & p, const A & a, const B & b) { return apply(detail::select{}, p, a, b); }
template<class A, class B, class T> constexpr apply_t<detail::lerp, A, B, T> lerp (const A & a, const B & b, const T & t) { return apply(detail::lerp{}, a, b, t); }
// Support for vector algebra
template<class T> constexpr T cross (const vec<T,2> & a, const vec<T,2> & b) { return a.x*b.y-a.y*b.x; }
template<class T> constexpr vec<T,2> cross (T a, const vec<T,2> & b) { return {-a*b.y, a*b.x}; }
template<class T> constexpr vec<T,2> cross (const vec<T,2> & a, T b) { return {a.y*b, -a.x*b}; }
template<class T> constexpr vec<T,3> cross (const vec<T,3> & a, const vec<T,3> & b) { return {a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x}; }
template<class T, int M> constexpr T dot (const vec<T,M> & a, const vec<T,M> & b) { return sum(a*b); }
template<class T, int M> constexpr T length2 (const vec<T,M> & a) { return dot(a,a); }
template<class T, int M> T length (const vec<T,M> & a) { return std::sqrt(length2(a)); }
template<class T, int M> vec<T,M> normalize(const vec<T,M> & a) { return a / length(a); }
template<class T, int M> constexpr T distance2(const vec<T,M> & a, const vec<T,M> & b) { return length2(b-a); }
template<class T, int M> T distance (const vec<T,M> & a, const vec<T,M> & b) { return length(b-a); }
template<class T, int M> T uangle (const vec<T,M> & a, const vec<T,M> & b) { T d=dot(a,b); return d > 1 ? 0 : std::acos(d < -1 ? -1 : d); }
template<class T, int M> T angle (const vec<T,M> & a, const vec<T,M> & b) { return uangle(normalize(a), normalize(b)); }
template<class T> vec<T,2> rot (T a, const vec<T,2> & v) { const T s = std::sin(a), c = std::cos(a); return {v.x*c - v.y*s, v.x*s + v.y*c}; }
template<class T, int M> vec<T,M> nlerp (const vec<T,M> & a, const vec<T,M> & b, T t) { return normalize(lerp(a,b,t)); }
template<class T, int M> vec<T,M> slerp (const vec<T,M> & a, const vec<T,M> & b, T t) { T th=uangle(a,b); return th == 0 ? a : a*(std::sin(th*(1-t))/std::sin(th)) + b*(std::sin(th*t)/std::sin(th)); }
// Support for quaternion algebra using 4D vectors, representing xi + yj + zk + w
template<class T> constexpr vec<T,4> qconj(const vec<T,4> & q) { return {-q.x,-q.y,-q.z,q.w}; }
template<class T> vec<T,4> qinv (const vec<T,4> & q) { return qconj(q)/length2(q); }
template<class T> vec<T,4> qexp (const vec<T,4> & q) { const auto v = q.xyz(); const auto vv = length(v); return std::exp(q.w) * vec<T,4>{v * (vv > 0 ? std::sin(vv)/vv : 0), std::cos(vv)}; }
template<class T> vec<T,4> qlog (const vec<T,4> & q) { const auto v = q.xyz(); const auto vv = length(v), qq = length(q); return {v * (vv > 0 ? std::acos(q.w/qq)/vv : 0), std::log(qq)}; }
template<class T> vec<T,4> qpow (const vec<T,4> & q, const T & p) { const auto v = q.xyz(); const auto vv = length(v), qq = length(q), th = std::acos(q.w/qq); return std::pow(qq,p)*vec<T,4>{v * (vv > 0 ? std::sin(p*th)/vv : 0), std::cos(p*th)}; }
template<class T> constexpr vec<T,4> qmul (const vec<T,4> & a, const vec<T,4> & b) { return {a.x*b.w+a.w*b.x+a.y*b.z-a.z*b.y, a.y*b.w+a.w*b.y+a.z*b.x-a.x*b.z, a.z*b.w+a.w*b.z+a.x*b.y-a.y*b.x, a.w*b.w-a.x*b.x-a.y*b.y-a.z*b.z}; }
template<class T, class... R> constexpr vec<T,4> qmul(const vec<T,4> & a, R... r) { return qmul(a, qmul(r...)); }
// Support for 3D spatial rotations using quaternions, via qmul(qmul(q, v), qconj(q))
template<class T> constexpr vec<T,3> qxdir (const vec<T,4> & q) { return {q.w*q.w+q.x*q.x-q.y*q.y-q.z*q.z, (q.x*q.y+q.z*q.w)*2, (q.z*q.x-q.y*q.w)*2}; }
template<class T> constexpr vec<T,3> qydir (const vec<T,4> & q) { return {(q.x*q.y-q.z*q.w)*2, q.w*q.w-q.x*q.x+q.y*q.y-q.z*q.z, (q.y*q.z+q.x*q.w)*2}; }
template<class T> constexpr vec<T,3> qzdir (const vec<T,4> & q) { return {(q.z*q.x+q.y*q.w)*2, (q.y*q.z-q.x*q.w)*2, q.w*q.w-q.x*q.x-q.y*q.y+q.z*q.z}; }
template<class T> constexpr mat<T,3,3> qmat (const vec<T,4> & q) { return {qxdir(q), qydir(q), qzdir(q)}; }
template<class T> constexpr vec<T,3> qrot (const vec<T,4> & q, const vec<T,3> & v) { return qxdir(q)*v.x + qydir(q)*v.y + qzdir(q)*v.z; }
template<class T> T qangle(const vec<T,4> & q) { return std::atan2(length(q.xyz()), q.w)*2; }
template<class T> vec<T,3> qaxis (const vec<T,4> & q) { return normalize(q.xyz()); }
template<class T> vec<T,4> qnlerp(const vec<T,4> & a, const vec<T,4> & b, T t) { return nlerp(a, dot(a,b) < 0 ? -b : b, t); }
template<class T> vec<T,4> qslerp(const vec<T,4> & a, const vec<T,4> & b, T t) { return slerp(a, dot(a,b) < 0 ? -b : b, t); }
// Support for matrix algebra
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,1> & a, const vec<T,1> & b) { return a.x*b.x; }
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,2> & a, const vec<T,2> & b) { return a.x*b.x + a.y*b.y; }
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,3> & a, const vec<T,3> & b) { return a.x*b.x + a.y*b.y + a.z*b.z; }
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,4> & a, const vec<T,4> & b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; }
template<class T, int M, int N> constexpr mat<T,M,1> mul(const mat<T,M,N> & a, const mat<T,N,1> & b) { return {mul(a,b.x)}; }
template<class T, int M, int N> constexpr mat<T,M,2> mul(const mat<T,M,N> & a, const mat<T,N,2> & b) { return {mul(a,b.x), mul(a,b.y)}; }
template<class T, int M, int N> constexpr mat<T,M,3> mul(const mat<T,M,N> & a, const mat<T,N,3> & b) { return {mul(a,b.x), mul(a,b.y), mul(a,b.z)}; }
template<class T, int M, int N> constexpr mat<T,M,4> mul(const mat<T,M,N> & a, const mat<T,N,4> & b) { return {mul(a,b.x), mul(a,b.y), mul(a,b.z), mul(a,b.w)}; }
template<class T, int M, int N, int P> constexpr vec<T,M> mul(const mat<T,M,N> & a, const mat<T,N,P> & b, const vec<T,P> & c) { return mul(mul(a,b),c); }
template<class T, int M, int N, int P, int Q> constexpr mat<T,M,Q> mul(const mat<T,M,N> & a, const mat<T,N,P> & b, const mat<T,P,Q> & c) { return mul(mul(a,b),c); }
template<class T, int M, int N, int P, int Q> constexpr vec<T,M> mul(const mat<T,M,N> & a, const mat<T,N,P> & b, const mat<T,P,Q> & c, const vec<T,Q> & d) { return mul(mul(a,b,c),d); }
template<class T, int M, int N, int P, int Q, int R> constexpr mat<T,M,R> mul(const mat<T,M,N> & a, const mat<T,N,P> & b, const mat<T,P,Q> & c, const mat<T,Q,R> & d) { return mul(mul(a,b,c),d); }
template<class T, int M> constexpr mat<T,M,1> outerprod(const vec<T,M> & a, const vec<T,1> & b) { return {a*b.x}; }
template<class T, int M> constexpr mat<T,M,2> outerprod(const vec<T,M> & a, const vec<T,2> & b) { return {a*b.x, a*b.y}; }
template<class T, int M> constexpr mat<T,M,3> outerprod(const vec<T,M> & a, const vec<T,3> & b) { return {a*b.x, a*b.y, a*b.z}; }
template<class T, int M> constexpr mat<T,M,4> outerprod(const vec<T,M> & a, const vec<T,4> & b) { return {a*b.x, a*b.y, a*b.z, a*b.w}; }
template<class T> constexpr vec<T,1> diagonal(const mat<T,1,1> & a) { return {a.x.x}; }
template<class T> constexpr vec<T,2> diagonal(const mat<T,2,2> & a) { return {a.x.x, a.y.y}; }
template<class T> constexpr vec<T,3> diagonal(const mat<T,3,3> & a) { return {a.x.x, a.y.y, a.z.z}; }
template<class T> constexpr vec<T,4> diagonal(const mat<T,4,4> & a) { return {a.x.x, a.y.y, a.z.z, a.w.w}; }
template<class T, int N> constexpr T trace(const mat<T,N,N> & a) { return sum(diagonal(a)); }
template<class T, int M> constexpr mat<T,M,1> transpose(const mat<T,1,M> & m) { return {m.row(0)}; }
template<class T, int M> constexpr mat<T,M,2> transpose(const mat<T,2,M> & m) { return {m.row(0), m.row(1)}; }
template<class T, int M> constexpr mat<T,M,3> transpose(const mat<T,3,M> & m) { return {m.row(0), m.row(1), m.row(2)}; }
template<class T, int M> constexpr mat<T,M,4> transpose(const mat<T,4,M> & m) { return {m.row(0), m.row(1), m.row(2), m.row(3)}; }
template<class T, int M> constexpr mat<T,1,M> transpose(const vec<T,M> & m) { return transpose(mat<T,M,1>(m)); }
template<class T> constexpr mat<T,1,1> adjugate(const mat<T,1,1> & a) { return {vec<T,1>{1}}; }
template<class T> constexpr mat<T,2,2> adjugate(const mat<T,2,2> & a) { return {{a.y.y, -a.x.y}, {-a.y.x, a.x.x}}; }
template<class T> constexpr mat<T,3,3> adjugate(const mat<T,3,3> & a);
template<class T> constexpr mat<T,4,4> adjugate(const mat<T,4,4> & a);
template<class T, int N> constexpr mat<T,N,N> comatrix(const mat<T,N,N> & a) { return transpose(adjugate(a)); }
template<class T> constexpr T determinant(const mat<T,1,1> & a) { return a.x.x; }
template<class T> constexpr T determinant(const mat<T,2,2> & a) { return a.x.x*a.y.y - a.x.y*a.y.x; }
template<class T> constexpr T determinant(const mat<T,3,3> & a) { return a.x.x*(a.y.y*a.z.z - a.z.y*a.y.z) + a.x.y*(a.y.z*a.z.x - a.z.z*a.y.x) + a.x.z*(a.y.x*a.z.y - a.z.x*a.y.y); }
template<class T> constexpr T determinant(const mat<T,4,4> & a);
template<class T, int N> constexpr mat<T,N,N> inverse(const mat<T,N,N> & a) { return adjugate(a)/determinant(a); }
// Vectors and matrices can be used as ranges
template<class T, int M> T * begin( vec<T,M> & a) { return &a.x; }
template<class T, int M> const T * begin(const vec<T,M> & a) { return &a.x; }
template<class T, int M> T * end ( vec<T,M> & a) { return begin(a) + M; }
template<class T, int M> const T * end (const vec<T,M> & a) { return begin(a) + M; }
template<class T, int M, int N> vec<T,M> * begin( mat<T,M,N> & a) { return &a.x; }
template<class T, int M, int N> const vec<T,M> * begin(const mat<T,M,N> & a) { return &a.x; }
template<class T, int M, int N> vec<T,M> * end ( mat<T,M,N> & a) { return begin(a) + N; }
template<class T, int M, int N> const vec<T,M> * end (const mat<T,M,N> & a) { return begin(a) + N; }
// Factory functions for 3D spatial transformations (will possibly be removed or changed in a future version)
enum fwd_axis { neg_z, pos_z }; // Should projection matrices be generated assuming forward is {0,0,-1} or {0,0,1}
enum z_range { neg_one_to_one, zero_to_one }; // Should projection matrices map z into the range of [-1,1] or [0,1]?
template<class T> vec<T,4> rotation_quat (const vec<T,3> & axis, T angle) { return {axis*std::sin(angle/2), std::cos(angle/2)}; }
template<class T> vec<T,4> rotation_quat (const mat<T,3,3> & m);
template<class T> mat<T,4,4> translation_matrix(const vec<T,3> & translation) { return {{1,0,0,0},{0,1,0,0},{0,0,1,0},{translation,1}}; }
template<class T> mat<T,4,4> rotation_matrix (const vec<T,4> & rotation) { return {{qxdir(rotation),0}, {qydir(rotation),0}, {qzdir(rotation),0}, {0,0,0,1}}; }
template<class T> mat<T,4,4> scaling_matrix (const vec<T,3> & scaling) { return {{scaling.x,0,0,0}, {0,scaling.y,0,0}, {0,0,scaling.z,0}, {0,0,0,1}}; }
template<class T> mat<T,4,4> pose_matrix (const vec<T,4> & q, const vec<T,3> & p) { return {{qxdir(q),0}, {qydir(q),0}, {qzdir(q),0}, {p,1}}; }
template<class T> mat<T,4,4> lookat_matrix (const vec<T,3> & eye, const vec<T,3> & center, const vec<T,3> & view_y_dir, fwd_axis fwd = neg_z);
template<class T> mat<T,4,4> frustum_matrix (T x0, T x1, T y0, T y1, T n, T f, fwd_axis a = neg_z, z_range z = neg_one_to_one);
template<class T> mat<T,4,4> perspective_matrix(T fovy, T aspect, T n, T f, fwd_axis a = neg_z, z_range z = neg_one_to_one) { T y = n*std::tan(fovy / 2), x = y*aspect; return frustum_matrix(-x, x, -y, y, n, f, a, z); }
// Provide implicit conversion between linalg::vec<T,M> and std::array<T,M>
template<class T> struct converter<vec<T,1>, std::array<T,1>> { vec<T,1> operator() (const std::array<T,1> & a) const { return {a[0]}; } };
template<class T> struct converter<vec<T,2>, std::array<T,2>> { vec<T,2> operator() (const std::array<T,2> & a) const { return {a[0], a[1]}; } };
template<class T> struct converter<vec<T,3>, std::array<T,3>> { vec<T,3> operator() (const std::array<T,3> & a) const { return {a[0], a[1], a[2]}; } };
template<class T> struct converter<vec<T,4>, std::array<T,4>> { vec<T,4> operator() (const std::array<T,4> & a) const { return {a[0], a[1], a[2], a[3]}; } };
template<class T> struct converter<std::array<T,1>, vec<T,1>> { std::array<T,1> operator() (const vec<T,1> & a) const { return {a[0]}; } };
template<class T> struct converter<std::array<T,2>, vec<T,2>> { std::array<T,2> operator() (const vec<T,2> & a) const { return {a[0], a[1]}; } };
template<class T> struct converter<std::array<T,3>, vec<T,3>> { std::array<T,3> operator() (const vec<T,3> & a) const { return {a[0], a[1], a[2]}; } };
template<class T> struct converter<std::array<T,4>, vec<T,4>> { std::array<T,4> operator() (const vec<T,4> & a) const { return {a[0], a[1], a[2], a[3]}; } };
// Provide typedefs for common element types and vector/matrix sizes
namespace aliases
{
typedef vec<bool,1> bool1; typedef vec<uint8_t,1> byte1; typedef vec<int16_t,1> short1; typedef vec<uint16_t,1> ushort1;
typedef vec<bool,2> bool2; typedef vec<uint8_t,2> byte2; typedef vec<int16_t,2> short2; typedef vec<uint16_t,2> ushort2;
typedef vec<bool,3> bool3; typedef vec<uint8_t,3> byte3; typedef vec<int16_t,3> short3; typedef vec<uint16_t,3> ushort3;
typedef vec<bool,4> bool4; typedef vec<uint8_t,4> byte4; typedef vec<int16_t,4> short4; typedef vec<uint16_t,4> ushort4;
typedef vec<int,1> int1; typedef vec<unsigned,1> uint1; typedef vec<float,1> float1; typedef vec<double,1> double1;
typedef vec<int,2> int2; typedef vec<unsigned,2> uint2; typedef vec<float,2> float2; typedef vec<double,2> double2;
typedef vec<int,3> int3; typedef vec<unsigned,3> uint3; typedef vec<float,3> float3; typedef vec<double,3> double3;
typedef vec<int,4> int4; typedef vec<unsigned,4> uint4; typedef vec<float,4> float4; typedef vec<double,4> double4;
typedef mat<bool,1,1> bool1x1; typedef mat<int,1,1> int1x1; typedef mat<float,1,1> float1x1; typedef mat<double,1,1> double1x1;
typedef mat<bool,1,2> bool1x2; typedef mat<int,1,2> int1x2; typedef mat<float,1,2> float1x2; typedef mat<double,1,2> double1x2;
typedef mat<bool,1,3> bool1x3; typedef mat<int,1,3> int1x3; typedef mat<float,1,3> float1x3; typedef mat<double,1,3> double1x3;
typedef mat<bool,1,4> bool1x4; typedef mat<int,1,4> int1x4; typedef mat<float,1,4> float1x4; typedef mat<double,1,4> double1x4;
typedef mat<bool,2,1> bool2x1; typedef mat<int,2,1> int2x1; typedef mat<float,2,1> float2x1; typedef mat<double,2,1> double2x1;
typedef mat<bool,2,2> bool2x2; typedef mat<int,2,2> int2x2; typedef mat<float,2,2> float2x2; typedef mat<double,2,2> double2x2;
typedef mat<bool,2,3> bool2x3; typedef mat<int,2,3> int2x3; typedef mat<float,2,3> float2x3; typedef mat<double,2,3> double2x3;
typedef mat<bool,2,4> bool2x4; typedef mat<int,2,4> int2x4; typedef mat<float,2,4> float2x4; typedef mat<double,2,4> double2x4;
typedef mat<bool,3,1> bool3x1; typedef mat<int,3,1> int3x1; typedef mat<float,3,1> float3x1; typedef mat<double,3,1> double3x1;
typedef mat<bool,3,2> bool3x2; typedef mat<int,3,2> int3x2; typedef mat<float,3,2> float3x2; typedef mat<double,3,2> double3x2;
typedef mat<bool,3,3> bool3x3; typedef mat<int,3,3> int3x3; typedef mat<float,3,3> float3x3; typedef mat<double,3,3> double3x3;
typedef mat<bool,3,4> bool3x4; typedef mat<int,3,4> int3x4; typedef mat<float,3,4> float3x4; typedef mat<double,3,4> double3x4;
typedef mat<bool,4,1> bool4x1; typedef mat<int,4,1> int4x1; typedef mat<float,4,1> float4x1; typedef mat<double,4,1> double4x1;
typedef mat<bool,4,2> bool4x2; typedef mat<int,4,2> int4x2; typedef mat<float,4,2> float4x2; typedef mat<double,4,2> double4x2;
typedef mat<bool,4,3> bool4x3; typedef mat<int,4,3> int4x3; typedef mat<float,4,3> float4x3; typedef mat<double,4,3> double4x3;
typedef mat<bool,4,4> bool4x4; typedef mat<int,4,4> int4x4; typedef mat<float,4,4> float4x4; typedef mat<double,4,4> double4x4;
}
// Provide output streaming operators, writing something that resembles an aggregate literal that could be used to construct the specified value
namespace ostream_overloads
{
template<class C, class T> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const vec<T,1> & v) { return out << '{' << v[0] << '}'; }
template<class C, class T> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const vec<T,2> & v) { return out << '{' << v[0] << ',' << v[1] << '}'; }
template<class C, class T> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const vec<T,3> & v) { return out << '{' << v[0] << ',' << v[1] << ',' << v[2] << '}'; }
template<class C, class T> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const vec<T,4> & v) { return out << '{' << v[0] << ',' << v[1] << ',' << v[2] << ',' << v[3] << '}'; }
template<class C, class T, int M> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const mat<T,M,1> & m) { return out << '{' << m[0] << '}'; }
template<class C, class T, int M> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const mat<T,M,2> & m) { return out << '{' << m[0] << ',' << m[1] << '}'; }
template<class C, class T, int M> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const mat<T,M,3> & m) { return out << '{' << m[0] << ',' << m[1] << ',' << m[2] << '}'; }
template<class C, class T, int M> std::basic_ostream<C> & operator << (std::basic_ostream<C> & out, const mat<T,M,4> & m) { return out << '{' << m[0] << ',' << m[1] << ',' << m[2] << ',' << m[3] << '}'; }
}
}
namespace std
{
// Provide specializations for std::hash<...> with linalg types
template<class T> struct hash<linalg::vec<T,1>> { std::size_t operator()(const linalg::vec<T,1> & v) const { std::hash<T> h; return h(v.x); } };
template<class T> struct hash<linalg::vec<T,2>> { std::size_t operator()(const linalg::vec<T,2> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1); } };
template<class T> struct hash<linalg::vec<T,3>> { std::size_t operator()(const linalg::vec<T,3> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1) ^ (h(v.z) << 2); } };
template<class T> struct hash<linalg::vec<T,4>> { std::size_t operator()(const linalg::vec<T,4> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1) ^ (h(v.z) << 2) ^ (h(v.w) << 3); } };
template<class T, int M> struct hash<linalg::mat<T,M,1>> { std::size_t operator()(const linalg::mat<T,M,1> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x); } };
template<class T, int M> struct hash<linalg::mat<T,M,2>> { std::size_t operator()(const linalg::mat<T,M,2> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M); } };
template<class T, int M> struct hash<linalg::mat<T,M,3>> { std::size_t operator()(const linalg::mat<T,M,3> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M) ^ (h(v.z) << (M*2)); } };
template<class T, int M> struct hash<linalg::mat<T,M,4>> { std::size_t operator()(const linalg::mat<T,M,4> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M) ^ (h(v.z) << (M*2)) ^ (h(v.w) << (M*3)); } };
}
// Definitions of functions too long to be defined inline
template<class T> constexpr linalg::mat<T,3,3> linalg::adjugate(const mat<T,3,3> & a)
{
return {{a.y.y*a.z.z - a.z.y*a.y.z, a.z.y*a.x.z - a.x.y*a.z.z, a.x.y*a.y.z - a.y.y*a.x.z},
{a.y.z*a.z.x - a.z.z*a.y.x, a.z.z*a.x.x - a.x.z*a.z.x, a.x.z*a.y.x - a.y.z*a.x.x},
{a.y.x*a.z.y - a.z.x*a.y.y, a.z.x*a.x.y - a.x.x*a.z.y, a.x.x*a.y.y - a.y.x*a.x.y}};
}
template<class T> constexpr linalg::mat<T,4,4> linalg::adjugate(const mat<T,4,4> & a)
{
return {{a.y.y*a.z.z*a.w.w + a.w.y*a.y.z*a.z.w + a.z.y*a.w.z*a.y.w - a.y.y*a.w.z*a.z.w - a.z.y*a.y.z*a.w.w - a.w.y*a.z.z*a.y.w,
a.x.y*a.w.z*a.z.w + a.z.y*a.x.z*a.w.w + a.w.y*a.z.z*a.x.w - a.w.y*a.x.z*a.z.w - a.z.y*a.w.z*a.x.w - a.x.y*a.z.z*a.w.w,
a.x.y*a.y.z*a.w.w + a.w.y*a.x.z*a.y.w + a.y.y*a.w.z*a.x.w - a.x.y*a.w.z*a.y.w - a.y.y*a.x.z*a.w.w - a.w.y*a.y.z*a.x.w,
a.x.y*a.z.z*a.y.w + a.y.y*a.x.z*a.z.w + a.z.y*a.y.z*a.x.w - a.x.y*a.y.z*a.z.w - a.z.y*a.x.z*a.y.w - a.y.y*a.z.z*a.x.w},
{a.y.z*a.w.w*a.z.x + a.z.z*a.y.w*a.w.x + a.w.z*a.z.w*a.y.x - a.y.z*a.z.w*a.w.x - a.w.z*a.y.w*a.z.x - a.z.z*a.w.w*a.y.x,
a.x.z*a.z.w*a.w.x + a.w.z*a.x.w*a.z.x + a.z.z*a.w.w*a.x.x - a.x.z*a.w.w*a.z.x - a.z.z*a.x.w*a.w.x - a.w.z*a.z.w*a.x.x,
a.x.z*a.w.w*a.y.x + a.y.z*a.x.w*a.w.x + a.w.z*a.y.w*a.x.x - a.x.z*a.y.w*a.w.x - a.w.z*a.x.w*a.y.x - a.y.z*a.w.w*a.x.x,
a.x.z*a.y.w*a.z.x + a.z.z*a.x.w*a.y.x + a.y.z*a.z.w*a.x.x - a.x.z*a.z.w*a.y.x - a.y.z*a.x.w*a.z.x - a.z.z*a.y.w*a.x.x},
{a.y.w*a.z.x*a.w.y + a.w.w*a.y.x*a.z.y + a.z.w*a.w.x*a.y.y - a.y.w*a.w.x*a.z.y - a.z.w*a.y.x*a.w.y - a.w.w*a.z.x*a.y.y,
a.x.w*a.w.x*a.z.y + a.z.w*a.x.x*a.w.y + a.w.w*a.z.x*a.x.y - a.x.w*a.z.x*a.w.y - a.w.w*a.x.x*a.z.y - a.z.w*a.w.x*a.x.y,
a.x.w*a.y.x*a.w.y + a.w.w*a.x.x*a.y.y + a.y.w*a.w.x*a.x.y - a.x.w*a.w.x*a.y.y - a.y.w*a.x.x*a.w.y - a.w.w*a.y.x*a.x.y,
a.x.w*a.z.x*a.y.y + a.y.w*a.x.x*a.z.y + a.z.w*a.y.x*a.x.y - a.x.w*a.y.x*a.z.y - a.z.w*a.x.x*a.y.y - a.y.w*a.z.x*a.x.y},
{a.y.x*a.w.y*a.z.z + a.z.x*a.y.y*a.w.z + a.w.x*a.z.y*a.y.z - a.y.x*a.z.y*a.w.z - a.w.x*a.y.y*a.z.z - a.z.x*a.w.y*a.y.z,
a.x.x*a.z.y*a.w.z + a.w.x*a.x.y*a.z.z + a.z.x*a.w.y*a.x.z - a.x.x*a.w.y*a.z.z - a.z.x*a.x.y*a.w.z - a.w.x*a.z.y*a.x.z,
a.x.x*a.w.y*a.y.z + a.y.x*a.x.y*a.w.z + a.w.x*a.y.y*a.x.z - a.x.x*a.y.y*a.w.z - a.w.x*a.x.y*a.y.z - a.y.x*a.w.y*a.x.z,
a.x.x*a.y.y*a.z.z + a.z.x*a.x.y*a.y.z + a.y.x*a.z.y*a.x.z - a.x.x*a.z.y*a.y.z - a.y.x*a.x.y*a.z.z - a.z.x*a.y.y*a.x.z}};
}
template<class T> constexpr T linalg::determinant(const mat<T,4,4> & a)
{
return a.x.x*(a.y.y*a.z.z*a.w.w + a.w.y*a.y.z*a.z.w + a.z.y*a.w.z*a.y.w - a.y.y*a.w.z*a.z.w - a.z.y*a.y.z*a.w.w - a.w.y*a.z.z*a.y.w)
+ a.x.y*(a.y.z*a.w.w*a.z.x + a.z.z*a.y.w*a.w.x + a.w.z*a.z.w*a.y.x - a.y.z*a.z.w*a.w.x - a.w.z*a.y.w*a.z.x - a.z.z*a.w.w*a.y.x)
+ a.x.z*(a.y.w*a.z.x*a.w.y + a.w.w*a.y.x*a.z.y + a.z.w*a.w.x*a.y.y - a.y.w*a.w.x*a.z.y - a.z.w*a.y.x*a.w.y - a.w.w*a.z.x*a.y.y)
+ a.x.w*(a.y.x*a.w.y*a.z.z + a.z.x*a.y.y*a.w.z + a.w.x*a.z.y*a.y.z - a.y.x*a.z.y*a.w.z - a.w.x*a.y.y*a.z.z - a.z.x*a.w.y*a.y.z);
}
template<class T> linalg::vec<T,4> linalg::rotation_quat(const mat<T,3,3> & m)
{
const vec<T,4> q {m.x.x-m.y.y-m.z.z, m.y.y-m.x.x-m.z.z, m.z.z-m.x.x-m.y.y, m.x.x+m.y.y+m.z.z}, s[] {
{1, m.x.y + m.y.x, m.z.x + m.x.z, m.y.z - m.z.y},
{m.x.y + m.y.x, 1, m.y.z + m.z.y, m.z.x - m.x.z},
{m.x.z + m.z.x, m.y.z + m.z.y, 1, m.x.y - m.y.x},
{m.y.z - m.z.y, m.z.x - m.x.z, m.x.y - m.y.x, 1}};
return copysign(normalize(sqrt(max(T(0), T(1)+q))), s[argmax(q)]);
}
template<class T> linalg::mat<T,4,4> linalg::lookat_matrix(const vec<T,3> & eye, const vec<T,3> & center, const vec<T,3> & view_y_dir, fwd_axis a)
{
const vec<T,3> f = normalize(center - eye), z = a == pos_z ? f : -f, x = normalize(cross(view_y_dir, z)), y = cross(z, x);
return inverse(mat<T,4,4>{{x,0},{y,0},{z,0},{eye,1}});
}
template<class T> linalg::mat<T,4,4> linalg::frustum_matrix(T x0, T x1, T y0, T y1, T n, T f, fwd_axis a, z_range z)
{
const T s = a == pos_z ? T(1) : T(-1), o = z == neg_one_to_one ? n : 0;
return {{2*n/(x1-x0),0,0,0}, {0,2*n/(y1-y0),0,0}, {-s*(x0+x1)/(x1-x0),-s*(y0+y1)/(y1-y0),s*(f+o)/(f-n),s}, {0,0,-(n+o)*f/(f-n),0}};
}
#endif