-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHMSLSTM_cell.py
83 lines (61 loc) · 2.86 KB
/
HMSLSTM_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#reference: https://github.com/n-s-f/hierarchical-rnn/tree/master/hmlstm
from tensorflow.contrib.rnn.python.ops import core_rnn_cell
import tensorflow as tf
import collections
HMLSTMStateTuple=collections.namedtuple('HMLSTMStateTuple',['c','h','z'])
class HMSLSTM_cell(core_rnn_cell.RNNCell):
def __init__(self,hstate_size,h_below_size,h_above_size,batch_size,keep_p,reuse):
super().__init__(_reuse=reuse)
self.hstate_size=hstate_size
self.h_below_size=h_below_size
self.h_above_size=h_above_size
self.batch_size=batch_size
self.keep_p=keep_p
def zero_state(self):
return HMLSTMStateTuple(c=tf.zeros([self.batch_size,self.hstate_size]),h=tf.zeros([self.batch_size,self.hstate_size]),z=tf.zeros([self.batch_size,1]))
@property
def state_size(self):
return (self.hstate_size_size,self.hstate_size,1)
@property
def output_size(self):
return self.hstate_size_size+1
def call(self,input,states):
h=states.h
c=states.c
z=states.z
ha,hb,z_b=tf.split(input,[self.h_above_size,self.h_below_size,1],1)
s_rec=h
s_td=z*ha
s_bu=z_b*hb
bias_init = tf.constant_initializer(0, dtype=tf.float32)
concat=core_rnn_cell._linear([s_rec,s_td,s_bu],4*self.hstate_size+1,bias=True,bias_initializer=bias_init) #[B,4d+1] ,d is the state_size
pre_f,pre_i,pre_o,pre_g,pre_z_next = tf.split(concat, [self.hstate_size, self.hstate_size,self.hstate_size,self.hstate_size, 1], 1)
i = tf.sigmoid(pre_i) # [B, h_l]
g = tf.tanh(pre_g) # [B, h_l]
f = tf.sigmoid(pre_f) # [B, h_l]
o = tf.sigmoid(pre_o) # [B, h_l]
z=tf.squeeze(z, axis=[1])
z_b = tf.squeeze(z_b, axis=[1])
c_next=tf.where(tf.equal(z,tf.constant(1,dtype=tf.float32)),
tf.multiply(i,g),#flush
tf.where(tf.equal(z_b,tf.constant(1,dtype=tf.float32)),
tf.add(tf.multiply(c,f),tf.multiply(i,g)),#update
tf.identity(c) #copy
)
)
h_next=tf.where(tf.equal(z,tf.constant(1,dtype=tf.float32)),
tf.multiply(o, tf.tanh(c_next)),#flush
tf.where(tf.equal(z_b,tf.constant(1,dtype=tf.float32)),
tf.multiply(o, tf.tanh(c_next)),#update
tf.identity(h) #copy
)
)
slope_multiplier = 1
pre_z_next = tf.sigmoid(pre_z_next * slope_multiplier)
g = tf.get_default_graph()
with g.gradient_override_map({"Round": "Identity"}):
z_next = tf.round(pre_z_next)
out_state=HMLSTMStateTuple(c=c_next,h=h_next,z=z_next)
h_next=tf.nn.dropout(h_next,keep_prob=self.keep_p)
output=tf.concat([h_next,z_next],axis=1)
return output,out_state,concat