-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathProduct of consecutive Fib numbers.js
54 lines (39 loc) · 1.77 KB
/
Product of consecutive Fib numbers.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// The Fibonacci numbers are the numbers in the following integer sequence (Fn):
// 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
// such as
// F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
// Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1) verifying
// F(n) * F(n+1) = prod.
// Your function productFib takes an integer (prod) and returns an array:
// [F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True)
// depending on the language if F(n) * F(n+1) = prod.
// If you don't find two consecutive F(m) verifying F(m) * F(m+1) = prodyou will return
// [F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False)
// F(m) being the smallest one such as F(m) * F(m+1) > prod.
// Examples
// productFib(714) # should return [21, 34, true],
// # since F(8) = 21, F(9) = 34 and 714 = 21 * 34
// productFib(800) # should return [34, 55, false],
// # since F(8) = 21, F(9) = 34, F(10) = 55 and 21 * 34 < 800 < 34 * 55
// Notes: Not useful here but we can tell how to choose the number n up to which to go: we can use the "golden ratio" phi which is (1 + sqrt(5))/2 knowing that F(n) is asymptotic to: phi^n / sqrt(5). That gives a possible upper bound to n.
// You can see examples in "Example test".
// References
// http://en.wikipedia.org/wiki/Fibonacci_number
// http://oeis.org/A000045
const productFib = prod => {
let arr = [0, 1];
let num1, num2, flag = false;
for(let i = 2; i <= prod; i++){
let muti = arr[i-2] * arr[i-1];
if (muti < prod){
arr[i] = arr[i-2] + arr[i-1]
}else {
if (muti === prod){
flag = true;
}
num1 = arr[i-2];
num2 = arr[i-1];
return [num1, num2, flag];
}
}
}