forked from rahulraghavendhra/HackerRank-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
print_post_from_in_pre.cpp
41 lines (35 loc) · 1.02 KB
/
print_post_from_in_pre.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <iostream>
using namespace std;
// A utility function to search x in arr[] of size n
int search(int arr[], int x, int n)
{
for (int i = 0; i < n; i++)
if (arr[i] == x)
return i;
return -1;
}
// Prints postorder traversal from given inorder and preorder traversals
void printPostOrder(int in[], int pre[], int n)
{
// The first element in pre[] is always root, search it
// in in[] to find left and right subtrees
int root = search(in, pre[0], n);
// If left subtree is not empty, print left subtree
if (root != 0)
printPostOrder(in, pre+1, root);
// If right subtree is not empty, print right subtree
if (root != n-1)
printPostOrder(in+root+1, pre+root+1, n-root-1);
// Print root
cout << pre[0] << " ";
}
// Driver program to test above functions
int main()
{
int in[] = {4, 2, 5, 1, 3, 6};
int pre[] = {1, 2, 4, 5, 3, 6};
int n = sizeof(in)/sizeof(in[0]);
cout << "Postorder traversal " << endl;
printPostOrder(in, pre, n);
return 0;
}