-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathrun.py
280 lines (233 loc) · 10.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright 2020 Google LLC, University of Victoria, Czech Technical University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
import os
from config import get_config, print_usage, validate_method
from utils.colmap_helper import is_colmap_complete
from utils.io_helper import load_json
from utils.queue_helper import (create_and_queue_jobs, create_sh_cmd,
estimate_runtime, is_job_complete,
create_job_key)
def create_eval_jobs(dep_list, mode, cfg, job_dict):
# Check if job is complete
if is_job_complete(mode, cfg):
print(' -- File {} already exists'.format(mode))
return []
# Check if other program is doing the same job
job_key = create_job_key(mode, cfg)
if job_key in job_dict:
print(' -- {} is already running on {}'.format(mode,
job_dict[job_key]))
return job_dict[job_key].split('-')
else:
# Update dependency
dep_str = None
if len(dep_list) > 0:
dep_str = ','.join(dep_list)
# Check if matches are computed -- queue (dependent on previous
# job)
print(' -- Computing {}'.format(mode))
cmd_list = [create_sh_cmd('compute_{}.py'.format(mode), cfg)]
job = create_and_queue_jobs(cmd_list, cfg, dep_str)
job_dict[job_key] = job
return [job]
def eval_viz_stereo(dep_list, cfg, debug=False):
# Do this one for one run
if cfg.run > 0:
return
# Update dependency
dep_str = None
if len(dep_list) > 0:
dep_str = ','.join(dep_list)
# The checks on existing files run inside, as there are many of them
print(' -- Generating stereo visualizations')
cmd_list = [create_sh_cmd('viz_stereo.py', cfg)]
create_and_queue_jobs(cmd_list, cfg, dep_str)
def eval_viz_colmap(dep_list, cfg):
# Do this one for one run
if cfg.run > 0:
return
# Update dependency
dep_str = None
if len(dep_list) > 0:
dep_str = ','.join(dep_list)
# The checks on existing files run inside, as there are many of them
print(' -- Generating multi-view visualizations')
cmd_list = [create_sh_cmd('viz_colmap.py', cfg)]
create_and_queue_jobs(cmd_list, cfg, dep_str)
def eval_packing(dep_list, cfg):
# Update dependency
dep_str = None
if len(dep_list) > 0:
dep_str = ','.join(dep_list)
print(' -- Packing results')
cmd_list = [create_sh_cmd('pack_res.py', cfg)]
create_and_queue_jobs(cmd_list, cfg, dep_str)
def eval_multiview(dep_list, cfg, bag_size_list, bag_size_num, job_dict):
colmap_jobs = []
job_key = create_job_key('multiview', cfg)
# Update dependency
dep_str = None
if len(dep_list) > 0:
dep_str = ','.join(dep_list)
# COLMAP evaluation
#
# TODO; For colmap, should we queue twice?
cfg_bag = deepcopy(cfg)
cmd_list = []
cfg_list = []
print(' -- The multiview task will work on these bags {}'.format([
'{} (x{})'.format(b, n) for b, n in zip(bag_size_list, bag_size_num)
]))
for _bag_size, _num_in_bag in zip(bag_size_list, bag_size_num):
for _bag_id in range(_num_in_bag):
cfg_bag.bag_size = _bag_size
cfg_bag.bag_id = _bag_id
# Check if colmap evaluation is complete -- queue
if not is_colmap_complete(cfg_bag):
# Check if other program is doing the same job
if job_key in job_dict:
print(' -- {} is already running on {}'.format(
'multiview', job_dict[job_key]))
return job_dict[job_key].split('-')
cmd_list += [create_sh_cmd('eval_colmap.py', cfg_bag)]
cfg_list += [deepcopy(cfg_bag)]
else:
print(' -- Multiview: bag size {} bag id {} results'
' already exists'.format(_bag_size, _bag_id))
# Check cfg_list to retrieve the estimated runtime. Queue
# cmd_list and reset both lists if we are expected to have
# less than 30 min of wall time after this job.
t_split = [float(t) for t in cfg.cc_time.split(':')]
if estimate_runtime(cfg_list) >= t_split[0] + \
t_split[1] / 60 - 0.5:
colmap_jobs += [create_and_queue_jobs(cmd_list, cfg, dep_str)]
cmd_list = []
cfg_list = []
# Queue any leftover jobs for this bag
if len(cmd_list) > 0:
colmap_jobs += [create_and_queue_jobs(cmd_list, cfg, dep_str)]
# save colmap jobs list under its job key
if len(colmap_jobs) != 0:
job_dict[job_key] = '-'.join(colmap_jobs)
return colmap_jobs
def main(cfg):
''' Main routine for the benchmark '''
DATASET_LIST = ['phototourism', 'pragueparks', 'googleurban']
# Read data and splits
for dataset in DATASET_LIST:
for subset in ['val', 'test']:
setattr(cfg, 'scenes_{}_{}'.format(dataset, subset),
'./json/data/{}_{}.json'.format(dataset, subset))
setattr(cfg, 'splits_{}_{}'.format(dataset, subset),
'./json/bag_size/{}_{}.json'.format(dataset, subset))
# Read the list of methods and datasets
method_list = load_json(cfg.json_method)
for i, method in enumerate(method_list):
print('Validating method {}/{}: "{}"'.format(
i + 1, len(method_list), method['config_common']['json_label']))
validate_method(method,
is_challenge=cfg.is_challenge,
datasets=DATASET_LIST)
# Back up original config
cfg_orig = deepcopy(cfg)
job_dict = {}
# Loop over methods, datasets/scenes, and tasks
for method in method_list:
# accumulate packing dependencies over datasets and runs
all_stereo_jobs = []
all_multiview_jobs = []
for dataset in DATASET_LIST:
# Load data config
scene_list = load_json(
getattr(cfg_orig,
'scenes_{}_{}'.format(dataset, cfg_orig.subset)))
bag_size_json = load_json(
getattr(cfg_orig,
'splits_{}_{}'.format(dataset, cfg_orig.subset)))
bag_size_list = [b['bag_size'] for b in bag_size_json]
bag_size_num = [b['num_in_bag'] for b in bag_size_json]
# Overwrite vis_th for the arcollect dataset.
if dataset == 'googleurban':
cfg_orig.vis_th = 1
for scene in scene_list:
print('Working on {}: {}/{}'.format(
method['config_common']['json_label'], dataset, scene))
# For each task
for task in ['stereo', 'multiview']:
# Skip if the key does not exist or it is empty
cur_key = 'config_{}_{}'.format(dataset, task)
if cur_key not in method or not method[cur_key]:
print(
'Empty config for "{}", skipping!'.format(cur_key))
continue
# Append method to config
cfg = deepcopy(cfg_orig)
cfg.method_dict = deepcopy(method)
cfg.dataset = dataset
cfg.task = task
cfg.scene = scene
# Features
feature_jobs = create_eval_jobs([], 'feature', cfg,
job_dict)
# Matches
match_jobs = create_eval_jobs(feature_jobs, 'match', cfg,
job_dict)
# Filter
match_inlier_jobs = create_eval_jobs(
match_jobs, 'filter', cfg, job_dict)
# Empty dependencies
stereo_jobs = []
multiview_jobs = []
num_runs = getattr(
cfg, 'num_runs_{}_{}'.format(cfg.subset, task))
for run in range(num_runs):
cfg.run = run
# Pose estimation and stereo evaluation
if task == 'stereo' and cfg.eval_stereo:
geom_model_jobs = create_eval_jobs(
match_inlier_jobs, 'model', cfg, job_dict)
stereo_jobs += create_eval_jobs(
geom_model_jobs, 'stereo', cfg, job_dict)
all_stereo_jobs += stereo_jobs
# Visualization for stereo
if task == 'stereo' and cfg.run_viz:
eval_viz_stereo(stereo_jobs, cfg)
# Debugging for stereo
if task == 'stereo' and cfg.run_viz_debug:
eval_viz_stereo(stereo_jobs, cfg, debug=True)
# Multiview
if task == 'multiview' and cfg.eval_multiview:
multiview_jobs += eval_multiview(
match_inlier_jobs, cfg, bag_size_list,
bag_size_num, job_dict)
all_multiview_jobs += multiview_jobs
# Visualization for colmap
if task == 'multiview' and cfg.run_viz:
eval_viz_colmap(multiview_jobs, cfg)
# Packing -- can be skipped with --skip_packing=True
# For instance, when only generating visualizations
if not cfg.skip_packing:
cfg = deepcopy(cfg_orig)
cfg.method_dict = deepcopy(method)
eval_packing(
all_stereo_jobs + all_multiview_jobs,
cfg)
if __name__ == '__main__':
cfg, unparsed = get_config()
# If we have unparsed arguments, print usage and exit
if len(unparsed) > 0:
print_usage()
exit(1)
main(cfg)