-
Notifications
You must be signed in to change notification settings - Fork 53
/
master.py
78 lines (66 loc) · 3.32 KB
/
master.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) 2020 Uber Technologies, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
import numpy as np
from poet_distributed.es import initialize_master_fiber
from poet_distributed.poet_algo import MultiESOptimizer
def run_main(args):
initialize_master_fiber()
#set master_seed
np.random.seed(args.master_seed)
optimizer_zoo = MultiESOptimizer(args=args)
optimizer_zoo.optimize(iterations=args.n_iterations,
propose_with_adam=args.propose_with_adam,
reset_optimizer=True,
checkpointing=args.checkpointing,
steps_before_transfer=args.steps_before_transfer)
def main():
parser = ArgumentParser()
parser.add_argument('log_file')
parser.add_argument('--init', default='random')
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--lr_decay', type=float, default=0.9999)
parser.add_argument('--lr_limit', type=float, default=0.001)
parser.add_argument('--noise_std', type=float, default=0.1)
parser.add_argument('--noise_decay', type=float, default=0.999)
parser.add_argument('--noise_limit', type=float, default=0.01)
parser.add_argument('--l2_coeff', type=float, default=0.01)
parser.add_argument('--batches_per_chunk', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--eval_batch_size', type=int, default=1)
parser.add_argument('--eval_batches_per_step', type=int, default=50)
parser.add_argument('--num_workers', type=int, default=20)
parser.add_argument('--n_iterations', type=int, default=200)
parser.add_argument('--steps_before_transfer', type=int, default=25)
parser.add_argument('--master_seed', type=int, default=111)
parser.add_argument('--mc_lower', type=int, default=25)
parser.add_argument('--mc_upper', type=int, default=340)
parser.add_argument('--repro_threshold', type=int, default=200)
parser.add_argument('--max_num_envs', type=int, default=100)
parser.add_argument('--normalize_grads_by_noise_std', action='store_true', default=False)
parser.add_argument('--propose_with_adam', action='store_true', default=False)
parser.add_argument('--checkpointing', action='store_true', default=False)
parser.add_argument('--adjust_interval', type=int, default=4)
parser.add_argument('--returns_normalization', default='normal')
parser.add_argument('--stochastic', action='store_true', default=False)
parser.add_argument('--envs', nargs='+')
parser.add_argument('--start_from', default=None) # Json file to start from
args = parser.parse_args()
logger.info(args)
run_main(args)
if __name__ == "__main__":
main()