-
Notifications
You must be signed in to change notification settings - Fork 0
/
evader.py
216 lines (185 loc) · 9.58 KB
/
evader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import os
import time
import warnings
from datetime import datetime
# import gymnasium as gym # for env Ray version: 2.4.0
import ray
from ray import tune
# from ray.rllib.agents.ppo import PPOTrainer # Ray version: 2.0.0
from ray.rllib.algorithms.callbacks import DefaultCallbacks
from ray.rllib.algorithms.ppo import PPO # for env Ray version: 2.4.0
from ray.rllib.models import ModelCatalog
from tqdm import tqdm
from Environments import TornadoCashGameEnvEvader
from Models import GameNormModel
warnings.filterwarnings("ignore")
class CustomCallback(DefaultCallbacks):
def on_episode_step(self, *, worker, base_env, episode, **kwargs):
# action, wait_time, deposit_call_address, withdraw_call_address, \
# number_of_deposits, balance_deposit_call_address, balance_withdraw_call_address, \
# balance_TC_contract, remaining_of_the_challenge_table, DEPOSIT_CALL_ADDR, \
# WITHDRAW_CALL_ADDR_OR_IN_ADDR = episode.last_observation_for()
# reward = episode.last_reward_for()
# challenge_table = episode.last_info_for().get('challenge table')
# balance_table = tuple(episode.last_info_for().get('balance table').items())
# record = f'{action}|{wait_time}|{deposit_call_address}|{withdraw_call_address}|{number_of_deposits}|' \
# f'{balance_deposit_call_address}|{balance_withdraw_call_address}|' \
# f'{balance_TC_contract}|{reward}|{challenge_table}|{balance_table}|' \
# f'{remaining_of_the_challenge_table}|{DEPOSIT_CALL_ADDR}|{WITHDRAW_CALL_ADDR_OR_IN_ADDR}\n'
#
# log_file = open(f'{data_log_dir}/{episode.episode_id}.steps', 'a')
# log_file.write(record)
# log_file.flush()
# log_file.close()
pass
def on_episode_end(self, *, worker, base_env, policies, episode, **kwargs):
# chain = episode.last_info_for().get('chain')
# chain.to_csv(f'{data_log_dir}/{episode.episode_id}.eth', index=False)
# heuristic_reward_history = episode.last_info_for().get('heuristic reward history')
# heuristic_reward_history.to_csv(f'{data_log_dir}/{episode.episode_id}.reward', index=False)
pass
class RunGame:
@staticmethod
def load_ppo_trainer(config):
trainer = PPO(config=config) # for env Ray version: 2.4.0
# trainer = PPOTrainer(config=config) # for env Ray version: 2.0.0
return trainer
@staticmethod
def run_parallel(no_iter_in, config):
tune.run(
"PPO", # Use the PPO algorithm
config=config,
stop={"training_iteration": no_iter_in}, # Stop after a certain number of steps
verbose=1, # Set the verbosity level
)
@staticmethod
def run_iteratively(no_iter_in, log_dir_in, data_log_dir_in, checkpoint_dir, config=None):
os.environ["TMPDIR"] = '/home/ravindu/backup/temp'
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["RAY_DISABLE_MEMORY_MONITOR"] = "1"
ray.init()
trainer = RunGame.load_ppo_trainer(config=config)
result_file = open(f'{log_dir_in}/dryrun.csv', 'a')
result_file.write("episode_reward_mean,episode_reward_max,episode_reward_min\n")
result_file.flush()
# log_eth = open(f'{log_dir_in}/eth.log', 'w')
# log_reward = open(f'{log_dir_in}/reward.log', 'w')
# log_step = open(f'{log_dir_in}/step.log', 'w')
# pre_eth = []
# pre_reward = []
# pre_step = []
for _i in tqdm(range(no_iter_in)):
train = trainer.train()
trainer.save(checkpoint_dir)
episode_reward_mean = train['episode_reward_mean']
episode_reward_max = train['episode_reward_max']
episode_reward_min = train['episode_reward_min']
print(
f'episode_reward_mean :{episode_reward_mean}\tepisode_reward_max :{episode_reward_max}\t'
f'episode_reward_min :{episode_reward_min}')
result_file.write(f'{episode_reward_mean},{episode_reward_max},{episode_reward_min}\n')
result_file.flush()
# files_eth = glob.glob(f'{data_log_dir_in}/*.eth')
# files_reward = glob.glob(f'{data_log_dir_in}/*.reward')
# files_step = glob.glob(f'{data_log_dir_in}/*.steps')
# files_eth.sort(key=os.path.getmtime)
# log_eth.write(f'{",".join(list(filter(lambda x: x not in pre_eth, files_eth)))}\n')
# log_eth.flush()
# pre_eth = files_eth
# files_reward.sort(key=os.path.getmtime)
# log_reward.write(f'{",".join(list(filter(lambda x: x not in pre_reward, files_reward)))}\n')
# log_reward.flush()
# pre_reward = files_reward
# files_step.sort(key=os.path.getmtime)
# log_step.write(f'{",".join(list(filter(lambda x: x not in pre_step, files_step)))}\n')
# log_step.flush()
# pre_step = files_step
result_file.flush()
result_file.close()
# log_eth.flush()
# log_eth.close()
#
# log_reward.flush()
# log_reward.close()
#
# log_step.flush()
# log_step.close()
ray.shutdown()
if __name__ == '__main__':
start_time = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, help='name of the experiment')
parser.add_argument('--data_dir', type=str, help='dir for the chain history data')
parser.add_argument('--log_dir', type=str, help='dir for the log training logs')
parser.add_argument('--checkpoint_dir', type=str, help='dir for the model checkpoints')
parser.add_argument('--no_addresses_agent_challenge_table', type=int, help='no_addresses_agent_challenge_table')
parser.add_argument('--agent_challenge_table', type=str, help='agent_challenge_table')
parser.add_argument('--agent_address_range_starts', type=int, help='agent_address_range_starts')
parser.add_argument('--agent_address_range_end', type=int, help='agent_address_range_end')
parser.add_argument('--agent_mutable_address_range_start', type=int, help='agent_mutable_address_range_start')
parser.add_argument('--agent_mutable_address_range_end', type=int, help='agent_mutable_address_range_end')
parser.add_argument('--crowd_address_range_starts', type=int, help='crowd_address_range_starts')
parser.add_argument('--no_of_crowd', type=int, help='no_of_crowd')
parser.add_argument('--no_of_wallets_for_each_crowd_agent', type=int, help='no_of_wallets_for_each_crowd_agent')
parser.add_argument('--amount_of_money_in_each_crowd', type=int, help='amount_of_money_in_each_crowd')
parser.add_argument('--fcnet_hiddens', type=str, help='fcnet_hiddens')
parser.add_argument('--no_iter', type=int, help='no_iter')
args = parser.parse_args()
TEST_NAME = args.name
EVADER_DATA_LOG_DIR = args.data_dir
EVADER_LOG_DIR = args.log_dir
EVADER_CHECK_POINT_DIR = args.checkpoint_dir
no_addresses_agent_challenge_table = args.no_addresses_agent_challenge_table
agent_challenge_table = eval(args.agent_challenge_table)
agent_address_range_starts = args.agent_address_range_starts
agent_address_range_end = args.agent_address_range_end
agent_mutable_address_range_start = args.agent_mutable_address_range_start
agent_mutable_address_range_end = args.agent_mutable_address_range_end
crowd_address_range_starts = args.crowd_address_range_starts
no_of_crowd = args.no_of_crowd
no_of_wallets_for_each_crowd_agent = args.no_of_wallets_for_each_crowd_agent
amount_of_money_in_each_crowd = args.amount_of_money_in_each_crowd
fcnet_hiddens = eval(args.fcnet_hiddens)
no_iter = args.no_iter
current_datetime = datetime.now()
folder_name = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
data_log_dir = f'{EVADER_DATA_LOG_DIR}{TEST_NAME}{folder_name}'
log_dir = f'{EVADER_LOG_DIR}{TEST_NAME}{folder_name}'
check_point_dir = f'{EVADER_CHECK_POINT_DIR}{TEST_NAME}{folder_name}'
os.mkdir(data_log_dir)
os.mkdir(log_dir)
os.mkdir(check_point_dir)
ModelCatalog.register_custom_model("model_with_batch_normalization", GameNormModel)
_config = {
"env": TornadoCashGameEnvEvader,
"num_workers": 1,
"horizon": 10000,
"env_config": {
'block_size': 5,
'max_wait_time': 5,
'no_addresses_agent_challenge_table': no_addresses_agent_challenge_table,
'agent_challenge_table': agent_challenge_table,
'agent_address_range_starts': agent_address_range_starts,
'agent_address_range_end': agent_address_range_end,
'agent_mutable_address_range_start': agent_mutable_address_range_start,
'agent_mutable_address_range_end': agent_mutable_address_range_end,
'crowd_address_range_starts': crowd_address_range_starts,
'no_of_crowd': no_of_crowd,
'no_of_wallets_for_each_crowd_agent': no_of_wallets_for_each_crowd_agent,
'amount_of_money_in_each_crowd': amount_of_money_in_each_crowd
},
"model": {
# "custom_model": "model_with_batch_normalization"
"fcnet_hiddens": fcnet_hiddens,
},
"callbacks": CustomCallback,
"framework": "tf",
}
RunGame.run_iteratively(no_iter_in=no_iter, log_dir_in=log_dir, data_log_dir_in=data_log_dir,
checkpoint_dir=check_point_dir, config=_config)
# RunGame.run_parallel(no_iter_in=no_iter, config=_config)
end_time = time.time()
execution_time = end_time - start_time
print(f"Time taken: {execution_time} seconds")
# End!!