-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathjwst_sim_3ideal.py
731 lines (586 loc) · 27.3 KB
/
jwst_sim_3ideal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
#!/usr/bin/env python
import io
import pickle
import sys
import os
import json
import random
import time
import pandas as pd
from functools import partial
from urllib import parse, request
from tqdm import tqdm
import numpy as np
import scipy.stats as spstat
from collections import namedtuple
from astropy.time import Time
from astropy.coordinates import Distance, SkyCoord
import astropy.coordinates as coord
import astropy.table as at
import astropy.units as u, astropy.constants as c
import argparse
import matplotlib.pyplot as plt
from astropy.visualization import hist
import schwimmbad
from scipy.linalg import cholesky
import scipy.integrate as scinteg
from sklearn.preprocessing import MinMaxScaler
from sed_to_lc import SEDDerviedLC
from dns_mass_distribution import Galaudage21, Farrow19
from dns_mass_distribution import MIN_MASS, MAX_MASS, M_TOV, EOS_interpolator
from interpolate_bulla_sed import uniq_cos_theta, uniq_phi
from rates_models import LVK_UG
import inspiral_range
import ligo.em_bright
import ligo.em_bright.computeDiskMass
from ligo.em_bright.computeDiskMass import computeCompactness, computeDiskMass
import lalsimulation as lalsim
from gwemlightcurves.EjectaFits import DiUj2017, CoDi2019
from kilopop.kilonovae import bns_kilonovae_population_distribution as s22p
from kilopop.kilonovae import bns_kilonova as saeev
#np.random.seed(seed=42)
disable_tqdm = True
# asd from https://emfollow.docs.ligo.org/userguide/capabilities.html
detector_asd_links_O4 = dict(
ligo='https://dcc.ligo.org/public/0180/T2200043/003/aligo_O4high.txt',
virgo='https://dcc.ligo.org/public/0180/T2200043/003/avirgo_O4high_NEW.txt',
kagra='https://dcc.ligo.org/public/0180/T2200043/003/kagra_10Mpc.txt'
)
# asd from https://emfollow.docs.ligo.org/userguide/capabilities.html
detector_asd_links_O5 = dict(
ligo='https://dcc.ligo.org/public/0180/T2200043/003/AplusDesign.txt',
virgo='https://dcc.ligo.org/public/0180/T2200043/003/avirgo_O5low_NEW.txt',
kagra='https://dcc.ligo.org/public/0180/T2200043/003/kagra_128Mpc.txt'
)
def compute_dyn_ej(m1, c1, m2, c2):
a = -0.0719
b = 0.2116
d = -2.42
n = -2.905
mej_dyn = np.power(
10.0,
(
((a * (1.0 - 2.0 * c1) * m1) / (c1))
+ b * m2 * np.power((m1 / m2), n)
+ (d / 2.0)
)
+ (
((a * (1.0 - 2.0 * c2) * m2) / (c2))
+ b * m1 * np.power((m2 / m1), n)
+ (d / 2.0)
),
)
# Imposing a maximum value for the dynamical ejecta
max_mej_dyn = 0.09
mej_dyn[mej_dyn > max_mej_dyn] = max_mej_dyn
return mej_dyn
def compute_wind_ej(m1, m2, zetas):
a = -31.335
b = -0.9760
c = 1.0474
d = 0.05957
# make sure these okay
M_radius_1_dot_6 = EOS_interpolator(1.6)
M_thresh = (2.38 - (3.606 * (M_TOV / M_radius_1_dot_6))) * M_TOV
remnant_disk_mass = np.power(10.0,
a * (1.0 + b * np.tanh(
(c - ((m1 + m2) /
M_thresh)) / d)))
remnant_disk_mass[remnant_disk_mass < 1.0e-3] = 1.0e-3
mej_wind = zetas * remnant_disk_mass
return mej_wind
def compute_compactness(m):
G = 6.6743 * 10**-11 # m3 kg-1 s-2
c = 3 * 10**8 # m s^-1
M_sun = 1.9891 * 10**30 # kg
R = EOS_interpolator(m) * 1000 # from km to m
compactness = (G * m * M_sun) / (c**2 * R)
return compactness
def get_ejecta_mass(m1, m2):
# Different EOS
c_ns_1 = compute_compactness(m1)
c_ns_2 = compute_compactness(m2)
n_events = len(m1)
zetas = np.random.uniform(low=0.1, high=0.4, size=n_events)
# treat as BNS
m_dyn = compute_dyn_ej(m1, c_ns_1, m2, c_ns_2)
m_wind = compute_wind_ej(m1, m2, zetas)
# Check for prompt collapse to a BH
M_radius_1_dot_6 = EOS_interpolator(1.6)
M_thresh = (2.38 - (3.606 * (M_TOV / M_radius_1_dot_6))) * M_TOV
m_total = m1 + m2
m_dyn = np.where(m_total < M_thresh, m_dyn, 0)
m_wind = np.where(m_total < M_thresh, m_wind, 0)
return m_dyn, m_wind
def get_range(detector, ligo_run):
if ligo_run == 'O4':
psd_url = detector_asd_links_O4[detector]
elif ligo_run == 'O5':
psd_url = detector_asd_links_O5[detector]
print(psd_url)
try:
# if downloaded locally
asd_fp = open(os.path.basename(parse.urlparse(psd_url).path), "rb")
except FileNotFoundError:
print(f"Downloading PSD for {detector}")
asd_fp = io.BytesIO(request.urlopen(psd_url).read())
freq, asd = np.loadtxt(asd_fp, unpack=True)
psd = asd**2
# https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_inspiral__h.html#ggab955e4603c588fe19b39e47870a7b69cac65622993fd7f475a0ad423f35992906
return partial(inspiral_range.range, freq, psd, approximant="TaylorF2")
def get_correlated_series(n_events, upper_chol):
"""
Get some correlated uniformly distributed random series between 0 and 1
"""
rnd = np.random.uniform(0., 1., size=(n_events, 4))
series = rnd @ upper_chol
return series
def get_sim_dutycycles(n_events, upper_chol, h_duty, l_duty, v_duty, k_duty):
"""
Get some correlated duty cycle series
"""
series = get_correlated_series(n_events, upper_chol)
scaler = MinMaxScaler()
scaler.fit(series)
series = scaler.transform(series)
series = series.T
duty_cycles = np.zeros(series.shape)
h_series = series[0,:]
l_series = series[1,:]
v_series = series[2,:]
k_series = series[3,:]
h_on = duty_cycles[0,:]
l_on = duty_cycles[1,:]
v_on = duty_cycles[2,:]
k_on = duty_cycles[3,:]
h_on[h_series <= h_duty] = 1
l_on[l_series <= l_duty] = 1
v_on[v_series <= v_duty] = 1
k_on[k_series <= k_duty] = 1
h_on = h_on.astype(bool)
l_on = l_on.astype(bool)
v_on = v_on.astype(bool)
k_on = k_on.astype(bool)
return h_on, l_on, v_on, k_on
class MinZeroAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
if values <= 0 :
parser.error("Minimum value for {0} is 0".format(option_string))
setattr(namespace, self.dest, values)
def get_options(argv=None):
'''
Get commandline options
'''
parser = argparse.ArgumentParser()
parser.add_argument('--trials_dir', default='trial-exg-100', help='Directory to store simulation results')
parser.add_argument('--ligo_run', choices=['O4','O5'], default='O4', help='Pick LIGO observing run')
parser.add_argument('--mass_distrib', choices=['Galaudage21','Farrow19','flat'], default='Galaudage21', help='Pick BNS mass distribution')
parser.add_argument('--rate_model', choices=['LVK_UG_O4'], default='LVK_UG_O4', help='Pick BNS merger rate model')
parser.add_argument('--ntry', default=500, type=int, action=MinZeroAction, help='Set the number of MC samples')
parser.add_argument('--detection_passband', default='desr', help='Pick detection passband. Should be from https://sncosmo.readthedocs.io/en/stable/bandpass-list.html')
parser.add_argument('--detection_threshold', default=23, type=float, help='Pick detection threshold in detection passband.')
parser.add_argument('--sun_loss', default=0.5, help='The fraction not observed due to sun', type=float)
parser.add_argument('--bns_ligo_range', default= 150, help = 'Set the bns detection range for the two ligo detectors')
parser.add_argument('--bns_virgo_range', default= 70, help = 'Set the bns detection range for the virgo detectors')
parser.add_argument('--bns_kagra_range', default= 5, help = 'Set the bns detection range for the kagra detectors')
# TODO: Add argument for overlap between survey and ligo run
# duty factor motivation: https://dcc.ligo.org/public/0167/G2000497/002/G2000497_OpenLVEM_02Apr2020_kk_v2.pdf
args = parser.parse_args(args=argv)
return args
def main(argv=None):
args = get_options(argv=argv)
# LIGO run
ligo_observing_run = args.ligo_run
if ligo_observing_run == 'O4':
print("Configuring parameters for O4...")
# setup time-ranges
Range = namedtuple('Range', ['start', 'end'])
ligo_run_start = Time('2024-07-1T00:00:00.0')
ligo_run_end = Time('2025-06-30T00:00:00.0')
survey_cyc_start = Time('2024-07-1T00:00:00.0')
survey_cyc_end = Time('2025-06-30T00:00:00.0')
eng_time = 2.*u.week
# setup duty cycles
h_duty = 0.7
l_duty = 0.7
v_duty = 0.7
k_duty = 0.7
box_size = 510
elif ligo_observing_run == 'O5':
print("Configuring parameters for O5...")
Range = namedtuple('Range', ['start', 'end'])
ligo_run_start = Time('2026-10-1T00:00:00.0')
ligo_run_end = Time('2029-06-1T00:00:00.0')
survey_cyc_start = Time('2026-10-1T00:00:00.0')
survey_cyc_end = Time('2029-06-1T00:00:00.0')
eng_time = 2.*u.week
# setup duty cycles
h_duty = 0.7
l_duty = 0.7
v_duty = 0.7
k_duty = 0.7
box_size = 910
ligo_run = Range(start=ligo_run_start, end=ligo_run_end)
survey_cycle = Range(start=survey_cyc_start, end=survey_cyc_end)
latest_start = max(ligo_run_start, survey_cyc_start)
earliest_end = min(ligo_run_end, survey_cyc_end)
td = (earliest_end - latest_start) + eng_time
fractional_duration = (td/(1.*u.year)).decompose().value
volume = box_size**3
# the two ligo detectors ahve strongly correlated duty cycles
# they are both not very correlated with Virgo
lvc_cor_matrix = np.array([[1., 0.56, 0.56, 0.56],
[0.56, 1., 0.58, 0.58],
[0.56, 0.58, 1., 0.56],
[0.56, 0.58, 0.56, 1.]])
upper_chol = cholesky(lvc_cor_matrix)
# create the mass distribution of the merging neutron star
mass_distrib = args.mass_distrib
# setup event rates
n_try = args.ntry
rate_model = args.rate_model
# Create the dir
trials_dir = args.trials_dir
os.mkdir(f"{trials_dir}")
# Save args file
with open(f'{trials_dir}/mc_args.txt', 'w') as f:
json.dump(args.__dict__, f, indent=2)
# Photometric detections
detection_band = args.detection_passband
detection_threshold = args.detection_threshold
# define ranges
ligo_range = get_range('ligo', ligo_observing_run)
virgo_range = get_range('virgo', ligo_observing_run)
kagra_range = get_range('kagra', ligo_observing_run)
def dotry(n):
trial_df = pd.DataFrame()
# Sample from rate models
if rate_model == "LVK_UG_O4":
rate = LVK_UG(1)[0][0]
n_events = np.around(rate*volume*fractional_duration*(10**-9)).astype('int')
n_events = max(n_events,1)
cos_thetas = np.random.uniform(0, 1, size=n_events)
phis = np.random.uniform(15, 75, size=n_events)
thetas = np.rad2deg(np.arccos(cos_thetas))
omegas = np.minimum(thetas, 180 - thetas)
em_bool = np.array([], dtype=bool)
discovery_mags = np.array([])
discovery_phases = np.array([])
peak_mags = np.array([])
discovery_windows = np.array([])
ra_arr = np.array([])
dec_arr = np.array([])
d_Mpc = np.array([])
trial_number = np.array(([n] * n_events))
n1_bool = np.array(([False] * n_events))
n2_bool = np.array(([False] * n_events))
n3_bool = np.array(([False] * n_events))
n4_bool = np.array(([False] * n_events))
gw1_bool = np.array(([False] * n_events))
gw2_bool = np.array(([False] * n_events))
gw3_bool = np.array(([False] * n_events))
gw4_bool = np.array(([False] * n_events))
scaling_factors = np.array([])
print(f"### Starting trial = {n}; Num events = {n_events}", flush=True)
if mass_distrib == 'Galaudage21':
mass1, mass2 = Galaudage21(n_events)
mej_dyn_arr, mej_wind_arr = get_ejecta_mass(mass1, mass2)
elif mass_distrib == 'Farrow19':
mass1, mass2 = Farrow19(n_events)
mej_dyn_arr, mej_wind_arr = get_ejecta_mass(mass1, mass2)
elif mass_distrib == 'flat':
stars = s22p(population_size=n_events)
mass1 = np.array([stars.compute_lightcurve_properties_per_kilonova(i)['mass1'] for i in range(n_events)])
mass2 = np.array([stars.compute_lightcurve_properties_per_kilonova(i)['mass2'] for i in range(n_events)])
# For some reason this is really slow. Not using it anyway but idk how to fix it since its not our code
mej_dyn_arr = np.array([stars.compute_lightcurve_properties_per_kilonova(i)['dynamical_ejecta_mass'] for i in range(n_events)])
mej_wind_arr = np.array([stars.compute_lightcurve_properties_per_kilonova(i)['secular_ejecta_mass'] for i in range(n_events)])
bns_range_ligo = np.array([])
bns_range_virgo = np.array([])
bns_range_kagra = np.array([])
for m1, m2, o in tqdm(zip(mass1, mass2, omegas), total=n_events, disable=disable_tqdm):
bns_range_ligo = np.append(bns_range_ligo, [ligo_range(m1=m1, m2=m2, inclination = o)])
bns_range_virgo = np.append(bns_range_virgo,[virgo_range(m1=m1, m2=m2, inclination = o)])
bns_range_kagra = np.append(bns_range_kagra, [kagra_range(m1=m1, m2=m2, inclination = o)])
bns_range_ligo = bns_range_ligo*u.Mpc
bns_range_virgo = bns_range_virgo*u.Mpc
bns_range_kagra = bns_range_kagra*u.Mpc
# bns_range_ligo = args.bns_ligo_range * u.Mpc
# bns_range_virgo = args.bns_virgo_range * u.Mpc
# bns_range_kagra = args.bns_kagra_range * u.Mpc
tot_mass = mass1 + mass2
tot_ejecta_masses = mej_dyn_arr + mej_wind_arr
av = np.random.exponential(0.334, n_events)*0.334
# simulate coordinates. Additional term ensures minimum distance of 0.05 Mpc
x = np.random.uniform(-box_size/2., box_size/2., n_events)*u.megaparsec
y = np.random.uniform(-box_size/2., box_size/2., n_events)*u.megaparsec
z = np.random.uniform(-box_size/2., box_size/2., n_events)*u.megaparsec
dist = (x**2. + y**2. + z**2.)**0.5 + (0.05 * u.megaparsec)
h_on, l_on, v_on, k_on = get_sim_dutycycles(n_events, upper_chol,
h_duty, l_duty, v_duty, k_duty)
n_detectors_on = np.array(
[sum(_) for _ in np.vstack((h_on, l_on, v_on, k_on)).T]
)
# which detectors observed
dist_ligo_bool = dist <= bns_range_ligo
dist_virgo_bool = dist <= bns_range_virgo
dist_kagra_bool = dist <= bns_range_kagra
h_on_and_observed = h_on * dist_ligo_bool
l_on_and_observed = l_on * dist_ligo_bool
v_on_and_observed = v_on * dist_virgo_bool
k_on_and_observed = k_on * dist_kagra_bool
n_detectors_on_and_obs = np.sum(np.vstack(
(h_on_and_observed, l_on_and_observed, v_on_and_observed,
k_on_and_observed)).T,
axis=1
)
one_det_obs = n_detectors_on_and_obs == 1
two_det_obs = n_detectors_on_and_obs == 2
three_det_obs = n_detectors_on_and_obs == 3
four_det_obs = n_detectors_on_and_obs == 4
# decide whether there is a kilonova based on remnant matter
has_ejecta_bool = tot_ejecta_masses > 0
# arrays to store peaks mags in different pbs
peak_u = []
peak_g = []
peak_r = []
peak_i = []
peak_z = []
peak_y = []
for i, (cos_theta, phi, mej_dyn, mej_wind, d) in tqdm(enumerate(zip(cos_thetas, phis, mej_dyn_arr, mej_wind_arr, dist)), total=n_events, disable=disable_tqdm):
#print(f"Sample parameters: mass1 = {mass1[i]}, mass2 = {mass2[i]}, cos_theta = {cos_theta}, phi = {phi}, ejecta_mass_dyn = {mej_dyn}, ejecta_mass_wind = {mej_wind}, dist = {d}")
r, dec, ra = coord.cartesian_to_spherical(x[i], y[i], z[i])
ra_arr = np.append(ra_arr, [ra.value])
dec_arr = np.append(dec_arr, [dec.value])
d_Mpc = np.append(d_Mpc, [d.value])
coordinates = coord.SkyCoord(ra=ra, dec=dec)
p = np.arange(0.3, 20.1, 0.2)
obj = SEDDerviedLC(mej_dyn = mej_dyn, mej_wind = mej_wind, phi = phi, cos_theta = cos_theta, dist=d, coord=coordinates, av =av[i])
lcs = obj.getAppMagsInPassbands([detection_band], lc_phases=p)
# Add peaks to data
peaks = obj.getPeakAppMagsInPassbands(['lsstu','lsstg','lsstr','lssti','lsstz','lssty'],lc_phases=p)
peak_u.append(peaks['lsstu'])
peak_g.append(peaks['lsstg'])
peak_r.append(peaks['lsstr'])
peak_i.append(peaks['lssti'])
peak_z.append(peaks['lsstz'])
peak_y.append(peaks['lssty'])
scaling_factors = np.append(scaling_factors, [obj.scaling_factor])
min_mag = min(lcs[detection_band])
# Minimum magnitude is the peak value
peak_mags = np.append(peak_mags, [min_mag])
idx = lcs[detection_band] < detection_threshold
if min_mag < detection_threshold:
em_bool = np.append(em_bool, [True])
discovery_mag = (lcs[detection_band][idx])[0]
discovery_phase = (p[idx])[0]
discovery_mags = np.append(discovery_mags, [discovery_mag])
discovery_phases = np.append(discovery_phases, [discovery_phase])
discovery_window = (p[idx])[-1] - (p[idx])[0] + 0.2
discovery_windows = np.append(discovery_windows, [discovery_window])
else:
em_bool = np.append(em_bool, [False])
discovery_mags = np.append(discovery_mags, [np.nan])
discovery_phases = np.append(discovery_phases, [np.nan])
discovery_windows = np.append(discovery_windows, [np.nan])
# whether this event was not affected by then sun
detected_events = np.where(em_bool)
sun_bool = np.random.random(len(detected_events[0])) >= args.sun_loss
em_bool[detected_events] = sun_bool
n1_gw_only = np.where(one_det_obs)[0]
n1_gw = len(n1_gw_only)
gw1_bool[n1_gw_only] = True
n1_good = np.where(one_det_obs & em_bool & has_ejecta_bool)[0]
n1 = len(n1_good)
n1_bool[n1_good] = True
# sanity check
assert n1_gw >= n1, "GW events ({}) less than EM follow events ({})".format(n1_gw, n1)
n2_gw_only = np.where(two_det_obs)[0]
n2_gw = len(n2_gw_only)
gw2_bool[n2_gw_only] = True
n2_good = np.where(two_det_obs & em_bool & has_ejecta_bool)[0]
n2 = len(n2_good)
n2_bool[n2_good] = True
# sanity check
assert n2_gw >= n2, "GW events ({}) less than EM follow events ({})".format(n2_gw, n2)
n3_gw_only = np.where(three_det_obs)[0]
n3_gw = len(n3_gw_only)
gw3_bool[n3_gw_only] = True
n3_good = np.where(three_det_obs & em_bool & has_ejecta_bool)[0]
n3 = len(n3_good)
n3_bool[n3_good] = True
# sanity check
assert n3_gw >= n3, "GW events ({}) less than EM follow events ({})".format(n3_gw, n3)
n4_gw_only = np.where(four_det_obs)[0]
n4_gw = len(n4_gw_only)
gw4_bool[n4_gw_only] = True
n4_good = np.where(four_det_obs & em_bool & has_ejecta_bool)[0]
n4 = len(n4_good)
n4_bool[n4_good] = True
# sanity check
assert n4_gw >= n4, "GW events ({}) less than EM follow events ({})".format(n4_gw, n4)
# Events which gw detection on >=2 instrument
gw_recovered = (n2_gw + n3_gw + n4_gw) / n_events
# Events which have em detection
n_em = len(np.where(em_bool & has_ejecta_bool)[0])
em_recovered = n_em / n_events
# Events which gw detection on one instrument but also have detectable em counterparts - could've been caught if we had better duty cycles
single_gw_detection = n1 / n_events
# print("Number of events at each step")
# print(f"gw_recovered: {gw_recovered} em_recovered: {em_recovered} single gw detection: {single_gw_detection}")
# print(f"Events that could be caught if LVK duty cycles were more correlated {n1}")
# Create a data frame with all the information
trial_df['trial_number'] = trial_number
trial_df['m1'] = mass1
trial_df['m2'] = mass2
trial_df['total_mass'] = tot_mass
trial_df['mej_dyn'] = mej_dyn_arr
trial_df['mej_wind'] = mej_wind_arr
trial_df['cos_theta'] = cos_thetas
trial_df['phi'] = phis
trial_df['a_v'] = av
trial_df['dist'] = d_Mpc
trial_df['ra'] = ra_arr
trial_df['dec'] = dec_arr
trial_df['n_detectors_on_and_obs'] = n_detectors_on_and_obs
trial_df['em_bool'] = em_bool
trial_df['peak_mag'] = peak_mags
trial_df['discovery_mag'] = discovery_mags
trial_df['discovery_phase'] = discovery_phases
trial_df['scaling_factor'] = scaling_factors
trial_df['one_detector_event'] = n1_bool
trial_df['two_detector_event'] = n2_bool
trial_df['three_detector_event'] = n3_bool
trial_df['four_detector_event'] = n4_bool
trial_df['gw1'] = gw1_bool
trial_df['gw2'] = gw2_bool
trial_df['gw3'] = gw3_bool
trial_df['gw4'] = gw4_bool
trial_df['peak_u'] = peak_u
trial_df['peak_g'] = peak_g
trial_df['peak_r'] = peak_r
trial_df['peak_i'] = peak_i
trial_df['peak_z'] = peak_z
trial_df['peak_y'] = peak_y
print(f"Finished Trial = {n}; Num events = {n_events}\nNumber of:\n1 detector events: {n1}\n2 detector events: {n2}\n3 detector events: {n3}\n4 detector events: {n4}", flush=True)
print(f"GW Detections:\n1 detector events: {n1_gw}\n2 detector events: {n2_gw}\n3 detector events: {n3_gw}\n4 detector events: {n4_gw}", flush=True)
return dist[n1_good].value.tolist(), tot_mass[n1_good].tolist(),\
dist[n2_good].value.tolist(), tot_mass[n2_good].tolist(),\
dist[n3_good].value.tolist(), tot_mass[n3_good].tolist(),\
dist[n4_good].value.tolist(), tot_mass[n4_good].tolist(),\
discovery_mags[n1_good].tolist(), discovery_mags[n2_good].tolist(), \
discovery_mags[n3_good].tolist(), discovery_mags[n4_good].tolist(),\
peak_mags[n1_good].tolist(), peak_mags[n2_good].tolist(),\
peak_mags[n3_good].tolist(), peak_mags[n4_good].tolist(),\
discovery_phases[n1_good].tolist(), discovery_phases[n2_good].tolist(),\
discovery_phases[n3_good].tolist(), discovery_phases[n4_good].tolist(),\
discovery_windows[n1_good].tolist(), discovery_windows[n2_good].tolist(),\
discovery_windows[n3_good].tolist(),discovery_windows[n4_good].tolist(),\
n1, n2, n3, n4, \
gw_recovered, em_recovered, single_gw_detection, \
trial_df
with schwimmbad.JoblibPool(8) as pool:
values = list(pool.map(dotry, range(n_try)))
with open(f'{trials_dir}/raw_mc_data.pkl', 'wb') as f:
pickle.dump(values, f)
print("Finished computation...")
data_dump = dict()
n_detect1 = []
n_detect2 = []
n_detect3 = []
n_detect4 = []
dist_detect1 = []
mass_detect1 = []
dist_detect2 = []
mass_detect2 = []
dist_detect3 = []
mass_detect3 = []
dist_detect4 = []
mass_detect4 = []
mag_detect1 = []
mag_detect2 = []
mag_detect3 = []
mag_detect4 = []
mag_peak1 = []
mag_peak2 = []
mag_peak3 = []
mag_peak4 = []
discovery_phase1 = []
discovery_phase2 = []
discovery_phase3 = []
discovery_phase4 = []
discovery_window1 = []
discovery_window2 = []
discovery_window3 = []
discovery_window4 = []
gw_recovered_arr = []
em_recovered_arr = []
single_gw_detection_arr = []
df_list = []
for idx, (d1, m1, d2, m2, d3, m3, d4, m4, h1, h2, h3, h4, p1, p2, p3, p4, phase1, phase2, phase3, phase4, window1, window2, window3, window4, n1, n2, n3, n4, gw_recovered, em_recovered, single_gw_detection, df) in enumerate(values):
df_list.append(df)
gw_recovered_arr.append(gw_recovered)
em_recovered_arr.append(em_recovered)
single_gw_detection_arr.append(single_gw_detection)
if n1 >= 0:
n_detect1.append(n1)
if n1>0:
dist_detect1 += d1
mass_detect1 += m1
mag_detect1 += h1
mag_peak1 += p1
discovery_phase1 += phase1
discovery_window1 += window1
if n2 >= 0:
n_detect2.append(n2)
if n2>0:
dist_detect2 += d2
mass_detect2 += m2
mag_detect2 += h2
mag_peak2 += p2
discovery_phase2 += phase2
discovery_window2 += window2
if n3>=0:
n_detect3.append(n3)
if n3 > 0:
dist_detect3 += d3
mass_detect3 += m3
mag_detect3 += h3
mag_peak3 += p3
discovery_phase3 += phase3
discovery_window3 += window3
if n4>=0:
n_detect4.append(n4)
if n4 > 0:
dist_detect4 += d4
mass_detect4 += m4
mag_detect4 += h4
mag_peak4 += p4
discovery_phase4 += phase4
discovery_window4 += window4
data_dump[f"{idx}"] = {"d1": d1, "m1": m1,
"d2": d2, "m2": m2,
"d3": d3, "m3": m3,
"d4": d4, "m4": m4,
"h1": h1, "h2": h2, "h3": h3, "h4": h4,
"n1": n1, "n2": n2, "n3": n3, "n4": n4,
"p1": p1, "p2": p2, "p3": p3, "p4": p4,
"phase1": phase1, "phase2": phase2, "phase3": phase3, "phase4": phase4,
"window1": window1, "window2": window2, 'window3': window3, 'window4':window4}
with open(f"{trials_dir}/data_dump.pickle", "wb") as f:
pickle.dump(data_dump, f)
with open(f'{trials_dir}/plotting_data.pickle', 'wb') as f:
res = dict(n_detect1=n_detect1, n_detect2=n_detect2, n_detect3=n_detect3, n_detect4=n_detect4,
dist_detect1=dist_detect1, dist_detect2=dist_detect2, dist_detect3=dist_detect3, dist_detect4=dist_detect4,
mass_detect1=mass_detect1, mass_detect2=mass_detect2, mass_detect3=mass_detect3, mass_detect4=mass_detect4,
mag_detect1=mag_detect1, mag_detect2=mag_detect2, mag_detect3=mag_detect3, mag_detect4=mag_detect4,
mag_peak1 =mag_peak1, mag_peak2 =mag_peak2, mag_peak3=mag_peak3, mag_peak4=mag_peak4,
discovery_phase1=discovery_phase1, discovery_phase2=discovery_phase2, discovery_phase3=discovery_phase3, discovery_phase4=discovery_phase4,
discovery_window1=discovery_window1, discovery_window2=discovery_window2, discovery_window3=discovery_window3, discovery_window4 = discovery_window4,
gw_recovered=gw_recovered_arr, em_recovered=em_recovered_arr, single_gw_detection=single_gw_detection_arr)
pickle.dump(res, f)
df_master = pd.concat(df_list, ignore_index=True)
df_master.to_csv(f"{trials_dir}/trials_df.csv")
if __name__=='__main__':
argv = sys.argv[1:]
sys.exit(main(argv=argv))