forked from marcotcr/lime-experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
explainers.py
242 lines (227 loc) · 8.56 KB
/
explainers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from abc import ABCMeta, abstractmethod
import numpy as np
import scipy as sp
from sklearn import linear_model
import sklearn.metrics.pairwise
###############################
## Random Explainer
###############################
class RandomExplainer:
def __init__(self):
pass
def reset(self):
pass
def explain_instance(self,
instance_vector,
label,
classifier,
num_features,
dataset):
nonzero = instance_vector.nonzero()[1]
explanation = np.random.choice(nonzero, num_features)
return [(x, 1) for x in explanation]
def explain(self,
train_vectors,
train_labels,
classifier,
num_features,
dataset):
i = np.random.randint(0, train_vectors.shape[0])
explanation = self.explain_instance(train_vectors[i], None, None,
num_features, dataset)
return i, explanation
###############################
## Standalone Explainers
###############################
def most_important_word(classifier, v, class_):
# Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y.
max_index = 0
max_change = -1
orig = classifier.predict_proba(v)[0][class_]
for i in v.nonzero()[1]:
val = v[0,i]
v[0,i] = 0
pred = classifier.predict_proba(v)[0][class_]
change = orig - pred
if change > max_change:
max_change = change
max_index = i
v[0,i] = val
if max_change < 0:
return -1
return max_index
def explain_greedy(instance_vector,
label,
classifier,
num_features,
dataset=None):
explanation = []
z = instance_vector.copy()
while len(explanation) < num_features:
i = most_important_word(classifier, z, label)
if i == -1:
break
z[0,i] = 0
explanation.append(i)
return [(x, 1) for x in explanation]
def most_important_word_martens(predict_fn, v, class_):
# Returns the word w that moves P(Y) - P(Y|NOT w) the most for class Y.
max_index = 0
max_change = -1
orig = predict_fn(v)[0,class_]
for i in v.nonzero()[1]:
val = v[0,i]
v[0,i] = 0
pred = predict_fn(v)[0,class_]
change = orig - pred
if change > max_change:
max_change = change
max_index = i
v[0,i] = val
if max_change < 0:
return -1, max_change
return max_index, max_change
def explain_greedy_martens(instance_vector,
label,
predict_fn,
num_features,
dataset=None):
if not hasattr(predict_fn, '__call__'):
predict_fn = predict_fn.predict_proba
explanation = []
z = instance_vector.copy()
cur_score = predict_fn(instance_vector)[0, label]
while len(explanation) < num_features:
i, change = most_important_word_martens(predict_fn, z, label)
cur_score -= change
if i == -1:
break
explanation.append(i)
if cur_score < .5:
break
z[0,i] = 0
return [(x, 1) for x in explanation]
def data_labels_distances_mapping_text(x, classifier_fn, num_samples):
distance_fn = lambda x : sklearn.metrics.pairwise.cosine_distances(x[0],x)[0] * 100
features = x.nonzero()[1]
vals = np.array(x[x.nonzero()])[0]
doc_size = len(sp.sparse.find(x)[2])
sample = np.random.randint(1, doc_size, num_samples - 1)
data = np.zeros((num_samples, len(features)))
inverse_data = np.zeros((num_samples, len(features)))
data[0] = np.ones(doc_size)
inverse_data[0] = vals
features_range = range(len(features))
for i, s in enumerate(sample, start=1):
active = np.random.choice(features_range, s, replace=False)
data[i, active] = 1
for j in active:
inverse_data[i, j] = 1
sparse_inverse = sp.sparse.lil_matrix((inverse_data.shape[0], x.shape[1]))
sparse_inverse[:, features] = inverse_data
sparse_inverse = sp.sparse.csr_matrix(sparse_inverse)
mapping = features
labels = classifier_fn(sparse_inverse)
distances = distance_fn(sparse_inverse)
return data, labels, distances, mapping
# This is LIME
class GeneralizedLocalExplainer:
def __init__(self,
kernel_fn,
data_labels_distances_mapping_fn,
num_samples=5000,
lasso=True,
mean=None,
return_mean=False,
return_mapped=False,
lambda_=None,
verbose=True,
positive=False):
# Transform_classifier, transform_explainer,
# transform_explainer_to_classifier all take raw data in, whatever that is.
# perturb(x, num_samples) returns data (perturbed data in f'(x) form),
# inverse_data (perturbed data in x form) and mapping, where mapping is such
# that mapping[i] = j, where j is an index for x form.
# distance_fn takes raw data in. what we're calling raw data is just x
self.lambda_ = lambda_
self.kernel_fn = kernel_fn
self.data_labels_distances_mapping_fn = data_labels_distances_mapping_fn
self.num_samples = num_samples
self.lasso = lasso
self.mean = mean
self.return_mapped=return_mapped
self.return_mean = return_mean
self.verbose = verbose
self.positive=positive;
def reset(self):
pass
def data_labels_distances_mapping(self, raw_data, classifier_fn):
data, labels, distances, mapping = self.data_labels_distances_mapping_fn(raw_data, classifier_fn, self.num_samples)
return data, labels, distances, mapping
def generate_lars_path(self, weighted_data, weighted_labels):
X = weighted_data
alphas, active, coefs = linear_model.lars_path(X, weighted_labels, method='lasso', verbose=False, positive=self.positive)
return alphas, coefs
def explain_instance_with_data(self, data, labels, distances, label, num_features):
weights = self.kernel_fn(distances)
weighted_data = data * weights[:, np.newaxis]
if self.mean is None:
mean = np.mean(labels[:, label])
else:
mean = self.mean
shifted_labels = labels[:, label] - mean
if self.verbose:
print 'mean', mean
weighted_labels = shifted_labels * weights
used_features = range(weighted_data.shape[1])
nonzero = used_features
alpha = 1
if self.lambda_:
classif = linear_model.Lasso(alpha=self.lambda_, fit_intercept=False, positive=self.positive)
classif.fit(weighted_data, weighted_labels)
used_features = classif.coef_.nonzero()[0]
if used_features.shape[0] == 0:
if self.return_mean:
return [], mean
else:
return []
elif self.lasso:
alphas, coefs = self.generate_lars_path(weighted_data, weighted_labels)
for i in range(len(coefs.T) - 1, 0, -1):
nonzero = coefs.T[i].nonzero()[0]
if len(nonzero) <= num_features:
chosen_coefs = coefs.T[i]
alpha = alphas[i]
break
used_features = nonzero
debiased_model = linear_model.Ridge(alpha=0, fit_intercept=False)
debiased_model.fit(weighted_data[:, used_features], weighted_labels)
if self.verbose:
print 'Prediction_local', debiased_model.predict(data[0, used_features].reshape(1, -1)) + mean, 'Right:', labels[0, label]
if self.return_mean:
return sorted(zip(used_features,
debiased_model.coef_),
key=lambda x:np.abs(x[1]), reverse=True), mean
else:
return sorted(zip(used_features,
debiased_model.coef_),
key=lambda x:np.abs(x[1]), reverse=True)
def explain_instance(self,
raw_data,
label,
classifier_fn,
num_features, dataset=None):
if not hasattr(classifier_fn, '__call__'):
classifier_fn = classifier_fn.predict_proba
data, labels, distances, mapping = self.data_labels_distances_mapping(raw_data, classifier_fn)
if self.return_mapped:
if self.return_mean:
exp, mean = self.explain_instance_with_data(data, labels, distances, label, num_features)
else:
exp = self.explain_instance_with_data(data, labels, distances, label, num_features)
exp = [(mapping[x[0]], x[1]) for x in exp]
if self.return_mean:
return exp, mean
else:
return exp
return self.explain_instance_with_data(data, labels, distances, label, num_features), mapping