-
Notifications
You must be signed in to change notification settings - Fork 0
/
rotate-yago-combined.yaml
82 lines (82 loc) · 1.5 KB
/
rotate-yago-combined.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
dataset:
name: yago3-10
entity_ranking:
chunk_size: 10000
eval:
batch_size: 128
import:
- rotate
job:
type: train
lookup_embedder:
class_name: LookupEmbedder
dim: 128
dropout: 0.0
initialize: xavier_uniform_
initialize_args:
normal_:
mean: 0.0
std: 3.166579222892156e-05
uniform_:
a: -0.27979055609235814
xavier_normal_:
gain: 1.0
xavier_uniform_:
gain: 1.0
normalize:
p: -1.0
regularize: lp
regularize_args:
p: 3
weighted: true
sparse: true
model: rotate
negative_sampling:
class_name: TrainingJobNegativeSampling
implementation: batch
num_samples:
o: 823
p: 0
s: 376
sampling_type: uniform
shared: true
shared_type: default
with_replacement: false
rotate:
class_name: RotatE
entity_embedder:
dropout: -0.3052056715041408
regularize_weight: 1.560642117113843e-19
type: lookup_embedder
l_norm: 1.0
normalize_phases: true
relation_embedder:
dim: -1
dropout: -0.19139107385978527
initialize: uniform_
initialize_args:
uniform_:
a: -3.14159265359
b: 3.14159265359
regularize_weight: 3.553425801480555e-07
type: lookup_embedder
train:
auto_correct: true
batch_size: 1024
loss: kl
loss_arg: 1.0
max_epochs: 400
num_workers: 0
optimizer:
default:
args:
lr: 0.21971607828979403
type: Adagrad
type: negative_sampling
valid:
early_stopping:
patience: 50
threshold:
epochs: 10
metric_value: 0.05
every: 5