-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2020-02-02.py
48 lines (39 loc) · 1.69 KB
/
2020-02-02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Given a list of integers, write a function that returns the largest sum of non-adjacent numbers.
Numbers can be 0 or negative.
For example, `[2, 4, 6, 2, 5]` should return 13, since we pick 2, 6, and 5. `[5, 1, 1, 5]` should return 10,
since we pick 5 and 5.
Follow-up: Can you do this in O(N) time and constant space?
"""
from typing import List
Vector = List[int]
def sum_nonadjacent(vec: Vector):
"""
This solution is based on Jen Haskell's pseudocode.
:param vec: list of integers
:return: largest sum of non-adjacent numbers
"""
if not vec:
return 0
last_pos_idx = -1
val_last_pos = 0
for idx in range(len(vec)):
if vec[idx] > 0:
val_idx_minus2 = vec[idx - 2] if idx - 2 >= 0 and vec[idx - 2] >= 0 else 0
val_idx_minus3 = vec[idx - 3] if idx - 3 >= 0 and vec[idx - 3] >= 0 else 0
vec[idx] = max(val_idx_minus2, val_idx_minus3, val_last_pos) + vec[idx]
last_pos_idx = idx - 1 if idx - 1 >= 0 and vec[idx - 1] > val_last_pos else last_pos_idx
val_last_pos = vec[last_pos_idx] if last_pos_idx > 0 else val_last_pos
return max(max(vec), 0)
if __name__ == "__main__":
assert sum_nonadjacent([2]) == 2
assert sum_nonadjacent([0]) == 0
assert sum_nonadjacent([-1]) == 0
assert sum_nonadjacent([-1, 0, 0]) == 0
assert sum_nonadjacent([-1, 0, 1]) == 1
assert sum_nonadjacent([2, 4, 6, 2, 5]) == 13
assert sum_nonadjacent([5, 1, 1, 5]) == 10
assert sum_nonadjacent([20, 23, 10]) == 30
assert sum_nonadjacent([2, -4, 6, -2, 5]) == 13
assert sum_nonadjacent([-1, -9, 2, -4, -4, 0, 1, 0, 0, -2, 5]) == 8
assert sum_nonadjacent([-5, -3, 0, 8, 2, 0, -1, 0, 0, -2, 5]) == 13