forked from Trusted-AI/adversarial-robustness-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_started_keras.py
59 lines (43 loc) · 2.44 KB
/
get_started_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
The script demonstrates a simple example of using ART with Keras. The example train a small model on the MNIST dataset
and creates adversarial examples using the Fast Gradient Sign Method. Here we use the ART classifier to train the model,
it would also be possible to provide a pretrained model to the ART classifier.
The parameters are chosen for reduced computational requirements of the script and not optimised for accuracy.
"""
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.optimizers import Adam
import numpy as np
from art.attacks.evasion import FastGradientMethod
from art.estimators.classification import KerasClassifier
from art.utils import load_mnist
# Step 1: Load the MNIST dataset
(x_train, y_train), (x_test, y_test), min_pixel_value, max_pixel_value = load_mnist()
# Step 2: Create the model
model = Sequential()
model.add(Conv2D(filters=4, kernel_size=(5, 5), strides=1, activation="relu", input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=10, kernel_size=(5, 5), strides=1, activation="relu", input_shape=(23, 23, 4)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(100, activation="relu"))
model.add(Dense(10, activation="softmax"))
model.compile(loss=categorical_crossentropy, optimizer=Adam(learning_rate=0.01), metrics=["accuracy"])
# Step 3: Create the ART classifier
classifier = KerasClassifier(model=model, clip_values=(min_pixel_value, max_pixel_value), use_logits=False)
# Step 4: Train the ART classifier
classifier.fit(x_train, y_train, batch_size=64, nb_epochs=3)
# Step 5: Evaluate the ART classifier on benign test examples
predictions = classifier.predict(x_test)
accuracy = np.sum(np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on benign test examples: {}%".format(accuracy * 100))
# Step 6: Generate adversarial test examples
attack = FastGradientMethod(estimator=classifier, eps=0.2)
x_test_adv = attack.generate(x=x_test)
# Step 7: Evaluate the ART classifier on adversarial test examples
predictions = classifier.predict(x_test_adv)
accuracy = np.sum(np.argmax(predictions, axis=1) == np.argmax(y_test, axis=1)) / len(y_test)
print("Accuracy on adversarial test examples: {}%".format(accuracy * 100))