-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdls.c
458 lines (424 loc) · 14.3 KB
/
dls.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*********************************************************************************
* Copyright (c) 2018 *
* Ali Omar abdelazim Mohammed <ali.mohammed@unibas.ch> *
* University of Basel, Switzerland *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify it *
* under the terms of the license (GNU LGPL) which comes with this package. *
*********************************************************************************/
#include <ctype.h>
#include <string.h>
#define MIN_CHUNK_SIZE 1
double *adaptive_weight;
double *weighted_average_ratio;
int *previous_chunk_size;
int *acc_chunk_size;
double *previous_chunk_time;
double *acc_chunk_time;
double *previous_chunk_sq_time; // for the sigma of AF
double *acc_chunk_sq_time;
double *previous_chunk_time_w_overhead;
double *num_weighted_average_ratio;
double *dem_weighted_average_ratio;
int *previous_step;
int is_calculated_AWF = 0; // flag for AWF
double *mu;
double *sigma2;
double AF_D = -1.0;
double AF_T = -1.0;
int current_batch_chunk_size = 1;
int TSS_chunk,TSS_delta;
void calculate_initial_weights(sg_host_t *hosts, int num_PE)
{
double total_sum = 0.0;
int i;
for (i = 0; i < num_PE; i++)
{
total_sum += sg_host_core_speed(hosts[i]);
//printf("PE %d speed: %lf \n", i, sg_host_core_speed(hosts[i]));
//getchar();
}
for (i = 0; i < num_PE; i++)
{
adaptive_weight[i] = sg_host_core_speed(hosts[i])/total_sum * num_PE;
//printf("weight_PE[%d] = %lf \n", i,adaptive_weight[i]);
//getchar();
}
//getchar();
}
void init_adaptive_weights(int num_PE)
{
int i = 0;
// initializing the adaptive weights
adaptive_weight = malloc(num_PE*sizeof(double));
weighted_average_ratio = malloc(num_PE*sizeof(double));
previous_chunk_size = malloc(num_PE*sizeof(int));
acc_chunk_size = malloc(num_PE*sizeof(int));
previous_chunk_time = malloc(num_PE*sizeof(double));
acc_chunk_time = malloc(num_PE*sizeof(double));
previous_chunk_sq_time = malloc(num_PE*sizeof(double));
acc_chunk_sq_time = malloc(num_PE*sizeof(double));
previous_chunk_time_w_overhead = malloc(num_PE*sizeof(double));
num_weighted_average_ratio = malloc(num_PE*sizeof(double));
dem_weighted_average_ratio = malloc(num_PE*sizeof(double));
previous_step = malloc(num_PE*sizeof(int));
mu = malloc(num_PE*sizeof(double));
sigma2 = malloc(num_PE*sizeof(double));
for (i = 0; i < num_PE; i++) {
adaptive_weight[i] = 1;
weighted_average_ratio[i] = 0;
previous_chunk_size[i] = 0;
acc_chunk_size[i] = 0;
acc_chunk_time[i] = 0.0;
acc_chunk_sq_time[i] = 0.0;
previous_chunk_time[i] = 0;
previous_chunk_sq_time[i] = 0.0;
previous_chunk_time_w_overhead[i] = 0;
num_weighted_average_ratio[i] = 0;
dem_weighted_average_ratio[i] = 0;
previous_step[i] = 0;
mu[i] = 0.0;
sigma2[i] = 0.0;
}
}
void calculate_AF_mu_sigma(int PE_id, double p_chunk_sq_time, double p_chunk_time, int p_chunk_size)
{
if (p_chunk_time <= 0.0)
{
//printf("worker did not finish yet, exiting \n");
return ;
}
// accummulate time and chunk size
acc_chunk_size[PE_id] += p_chunk_size;
acc_chunk_time[PE_id] += p_chunk_time;
acc_chunk_sq_time[PE_id] += p_chunk_sq_time;
mu[PE_id] = acc_chunk_time[PE_id] / (double) acc_chunk_size[PE_id];
//printf("mu[%d]: %lf, chunk time: %lf, size: %d \n",PE_id, mu[PE_id], p_chunk_time, p_chunk_size);
//getchar();
sigma2[PE_id] = (acc_chunk_sq_time[PE_id] - mu[PE_id]*mu[PE_id]*acc_chunk_size[PE_id]) / (double) (acc_chunk_size[PE_id] - 1.0);
sigma2[PE_id] = MAX(sigma2[PE_id], 0.0);
//sigma2[PE_id] = sigma2[PE_id] < 0.0 ? 0 : sigma2[PE_id];
//printf("PE_id: %d, chunk_time: %lf, chunk_size: %d, mu: %lf, sigma2: %lf\n",PE_id, p_chunk_time, p_chunk_size,mu[PE_id], sigma2[PE_id]);
//reset chunk time and size
previous_chunk_time[PE_id] = 0;
previous_chunk_time_w_overhead[PE_id] = 0;
previous_chunk_size[PE_id] = 0;
}
void calculate_AF_D_T(int num_PE)
{
int i;
// check if all workers have updated their sigmas
for(i = 0; i < num_PE; i++)
{
if (mu[i] <= 0.0)
{
//printf("Not all workers have updated their sigmas, ... exiting\n");
return ;
}
}
// calcuate AF_D and AF_T
double sum = 0.0;
AF_D = 0;
for (i = 0; i < num_PE; i++)
{
AF_D += (double) sigma2[i] / mu[i];
//printf("mu[%d]= %lf, AF_D= %lf \n", i, mu[i],AF_D);
sum += (double) 1.0 / mu[i];
}
AF_T = (double) 1.0 / sum ;
//printf(" AF_D: %lf, AF_T: %lf \n", AF_D, AF_T);
//getchar();
//reseting
//updated_sigmas = 0; commented to allow the updates to happen on every new measurement received
}
void update_weighted_average_ratio(int PE_id, int step, double p_chunk_time, int p_chunk_size)
{
// accumulate the weighted average in this time step
//printf("step: %d, chunk_time: %lf, chunk_size: %d, PE_id: %d \n", step, p_chunk_time,p_chunk_size,PE_id);
if (p_chunk_time <= 0.0)
{
//printf("worker did not finish yet, exiting \n");
return ;
}
num_weighted_average_ratio[PE_id] += step*p_chunk_time;
dem_weighted_average_ratio[PE_id] += step*p_chunk_size;
weighted_average_ratio[PE_id] = ((double) num_weighted_average_ratio[PE_id]) / ((double) dem_weighted_average_ratio[PE_id]);
//reset chunk time and size
previous_chunk_time[PE_id] = 0;
previous_chunk_time_w_overhead[PE_id] = 0;
previous_chunk_size[PE_id] = 0;
}
double calculate_average_weighted_ratio(int num_PE)
{
double total_ratio = 0;
int i;
for (i = 0; i < num_PE; i++) {
total_ratio += weighted_average_ratio[i];
}
return total_ratio/num_PE;
}
void update_adaptive_weights(int num_PE)
{
double *raw_weights = malloc(num_PE*sizeof(double));
double total_raw_weight = 0;
double average_weighted_ratio = calculate_average_weighted_ratio(num_PE);
int i;
// check that all ranks have updated their average weighted total_ratio
//printf("updated weighted ratio counter: %d \n", updated_weighted_ratios);
for(i = 0; i< num_PE; i++)
{
if (weighted_average_ratio[i] <= 0.0)
{
//printf("Not all workers have updated their ratios, cannot update weights ...exiting \n");
return ;
}
}
// calcuate raw weights and their sum
for (i = 0; i < num_PE; i++) {
raw_weights[i] = average_weighted_ratio / weighted_average_ratio[i];
total_raw_weight += raw_weights[i];
}
//update adaptive weights
for (i = 0; i < num_PE; i++)
{
adaptive_weight[i] = raw_weights[i] * num_PE / total_raw_weight;
//printf("PE_id: %d , weight: %lf \n", i, adaptive_weight[i]);
}
//getchar();
is_calculated_AWF++; // adaptive weights are calculated
}
void update_all_weighted_average_ratio(int num_PE)
{
int i;
for(i = 0; i < num_PE; i++)
{
update_weighted_average_ratio(i,previous_step[i], previous_chunk_time[i], previous_chunk_size[i]);
}
}
int calculate_chunk_size(int num_tasks, int num_PE, int step, int remaining, int DLS, double h_overhead, double sigma, int PE_id)
{
int j = step / num_PE;
int chunk_size = 1;
int i;
double K;
int tSize;
//printf("Method: %d, step: %d, Num_PE: %d, Num_tasks: %d, remaining: %d \n", DLS, step, num_PE, num_tasks, remaining);
switch(DLS)
{
case 0:
//static chunking
chunk_size = ceil((double) num_tasks/num_PE);
break;
case 1:
//self scheduling
chunk_size = 1;
break;
case 2:
//fixed size chunk
K=(sqrt(2)*num_tasks*h_overhead)/(sigma*num_PE*sqrt(log(num_PE)));
K=pow(K, 2.0/3.0);
chunk_size = (int) ceil(K);
break;
case 3:
//GSS
chunk_size = ceil((double) remaining/num_PE);
break;
case 4:
// TSS
if(step == 0 )
{
TSS_chunk = ceil((double) num_tasks / ((double) 2*num_PE));
int n = ceil(2*num_tasks/(TSS_chunk+1)); //n=2N/f+l
TSS_delta = (double) (TSS_chunk - 1)/(double) (n-1);
chunk_size = TSS_chunk;
}
else
{
chunk_size = TSS_chunk - TSS_delta;
TSS_chunk = chunk_size;
}
break;
case 5:
//factoring -- should be called only every batch
if(step%num_PE == 0) // new batch
{
chunk_size = ceil((double) remaining/(2*num_PE));
current_batch_chunk_size = chunk_size;
}
else
{
chunk_size = current_batch_chunk_size;
}
//chunk_size = ceil(pow(0.5,j+1)*num_tasks/(double) num_PE);
break;
case 6:
// weighted factoring
if(step%num_PE == 0) // new batch
{
chunk_size = ceil((double) remaining/(2*num_PE));
current_batch_chunk_size = chunk_size;
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
else
{
chunk_size = current_batch_chunk_size;
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
// chunk_size = ceil(pow(0.5,j+1)*num_tasks/(double) num_PE);
//chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
break;
case 7:
// AWF-B
update_weighted_average_ratio(PE_id,previous_step[PE_id], previous_chunk_time[PE_id], previous_chunk_size[PE_id]);
if(step%num_PE == 0) // new batch
{
update_adaptive_weights(num_PE);
if (is_calculated_AWF == 0) //first chunk 10% or AWF is not yet available
{
chunk_size = ceil(0.1*num_tasks/(double) num_PE);
current_batch_chunk_size = chunk_size;
}
else
{
chunk_size = ceil((double) remaining/(2*num_PE));
current_batch_chunk_size = chunk_size;
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
}
else // use old chunk size
{
chunk_size = current_batch_chunk_size;
if(is_calculated_AWF != 0) // use AWF
{
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
}
//printf("step: %d, AWF_flag: %d, PE: %d, chunk: %d \n",step,is_calculated_AWF, PE_id, chunk_size);
//getchar();
break;
case 8:
// AWF-C
update_weighted_average_ratio(PE_id,previous_step[PE_id], previous_chunk_time[PE_id], previous_chunk_size[PE_id]);
update_adaptive_weights(num_PE);
if (is_calculated_AWF == 0) // first chunk 10%, or AWF is not yet avaialable
{
chunk_size = ceil(0.1*num_tasks/(double) num_PE);
//printf("first batch, chunksize: %d \n", chunk_size);
}
else
{
chunk_size = ceil((double) remaining/(2*num_PE));
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
break;
case 9:
// AWF-D
update_weighted_average_ratio(PE_id,previous_step[PE_id], previous_chunk_time_w_overhead[PE_id], previous_chunk_size[PE_id]);
if(step%num_PE == 0) // new batch
{
update_adaptive_weights(num_PE);
if (is_calculated_AWF == 0) //first chunk 10% or AWF is not yet available
{
chunk_size = ceil(0.1*num_tasks/(double) num_PE);
current_batch_chunk_size = chunk_size;
}
else
{
chunk_size = ceil((double) remaining/(2*num_PE));
current_batch_chunk_size = chunk_size;
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
}
else // use old chunk size
{
chunk_size = current_batch_chunk_size;
if(is_calculated_AWF != 0) // use AWF
{
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
}
//printf("step: %d, AWF_flag: %d, PE: %d, chunk: %d \n",step,is_calculated_AWF, PE_id, chunk_size);
// getchar();
break;
case 10:
// AWF-E
update_weighted_average_ratio(PE_id,previous_step[PE_id], previous_chunk_time_w_overhead[PE_id], previous_chunk_size[PE_id]);
update_adaptive_weights(num_PE);
if ( is_calculated_AWF == 0) // first chunk 10% or AWF is not yet available
{
chunk_size = ceil(0.1*num_tasks/(double) num_PE);
//printf("first batch, chunksize: %d \n", chunk_size);
}
else
{
chunk_size = ceil((double) remaining/(2*num_PE));
chunk_size = ceil(chunk_size*adaptive_weight[PE_id]);
}
break;
case 11:
// adaptive factoring AF
//factoring in the first chunk
calculate_AF_mu_sigma(PE_id, previous_chunk_sq_time[PE_id], previous_chunk_time[PE_id], previous_chunk_size[PE_id]);
calculate_AF_D_T(num_PE);
if ((AF_D < 0.0 ) || (AF_T < 0.0 )) // first chunk size ...should be 10%
{
chunk_size = ceil(0.1*num_tasks/(double) num_PE);
//printf("first batch, chunksize: %d, PE: %d \n", chunk_size, PE_id);
}
else
{
chunk_size = (double) (AF_D + 2*AF_T*remaining - sqrt(AF_D*AF_D + 4*AF_D*AF_T*remaining)) / (2*mu[PE_id]);
chunk_size = ceil(chunk_size);
//printf(" AF_D: %lf, AF_T: %lf, chunk size: %d, mu: %lf, PE: %d\n", AF_D, AF_T, chunk_size, mu[PE_id], PE_id);
}
break;
case 12:
// modified FSC mFSC
tSize = (num_tasks+num_PE-1)/num_PE;
chunk_size = (0.55+tSize*log(2.0)/log( (1.0*tSize)));
break;
default:
printf("Error: unsupported DLS technique");
}
//XBT_INFO("chunk size = %d \n",chunk_size);
//getchar();
return MIN(MAX(chunk_size, MIN_CHUNK_SIZE), remaining);
}
/*calculate the number of chunks according to the current DLS algorithm */
int calculate_chunk_count(int num_tasks, int num_PE, int DLS, double h, double sigma, int PE_id)
{
int remaining = num_tasks;
int chunk_size = 1;
int count = 0;
switch(DLS)
{
case 0:
//static chunking
count = num_PE;
break;
case 1:
//self scheduling
count = num_tasks;
break;
case 3:
//GSS
chunk_size = ceil((double) remaining/num_PE);
for (count = 0; remaining > 0; count++) {
remaining = remaining - chunk_size ;
chunk_size = ceil((double) remaining/num_PE);
}
break;
case 4:
//factoring
while (remaining > 0) {
chunk_size = calculate_chunk_size(num_tasks,num_PE,count,remaining,DLS,h,sigma,PE_id);
remaining-=chunk_size;
count++;
}
break;
default:
printf("Error: unsupported DLS technique");
}
return count;
}