-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_sts.py
103 lines (88 loc) · 3.84 KB
/
training_sts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
This examples trains KoBERT for the STS benchmark from scratch.
It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity.
Usage:
python training_sts.py --model_name_or_path klue/bert-base
"""
import argparse
import logging
import math
import os
import random
from datetime import datetime
import numpy as np
import torch
from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from torch.utils.data import DataLoader
from data_util import load_kor_sts_samples
# Configure logger
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--max_seq_length", type=int, default=128)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--num_epochs", type=int, default=5)
parser.add_argument("--eval_steps", type=int, default=1000)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--output_dir", type=str, default="output")
parser.add_argument("--output_prefix", type=str, default="kor_sts_")
parser.add_argument("--seed", type=int, default=777)
args = parser.parse_args()
# Fix random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Read the dataset
model_save_path = os.path.join(
args.output_dir,
args.output_prefix
+ args.model_name_or_path.replace("/", "-")
+ "-"
+ datetime.now().strftime("%Y-%m-%d_%H-%M-%S"),
)
# Define SentenceTransformer model
word_embedding_model = models.Transformer(args.model_name_or_path, max_seq_length=args.max_seq_length)
pooling_model = models.Pooling(
word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False,
)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# Read the dataset
logging.info("Read KorSTS train/dev dataset")
sts_dataset_path = "kor-nlu-datasets/KorSTS"
train_file, dev_file = os.path.join(sts_dataset_path, "sts-train.tsv"), os.path.join(
sts_dataset_path, "sts-dev.tsv"
)
train_samples, dev_samples = load_kor_sts_samples(train_file), load_kor_sts_samples(dev_file)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=args.batch_size)
dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
dev_samples, batch_size=args.batch_size, name="sts-dev"
)
train_loss = losses.CosineSimilarityLoss(model=model)
# Configure the training.
warmup_steps = math.ceil(len(train_dataloader) * args.num_epochs * 0.1) # 10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(
train_objectives=[(train_dataloader, train_loss)],
evaluator=dev_evaluator,
epochs=args.num_epochs,
optimizer_params={"lr": args.learning_rate},
evaluation_steps=args.eval_steps,
warmup_steps=warmup_steps,
output_path=model_save_path,
)
# Load the stored model and evaluate its performance on STS benchmark dataset
model = SentenceTransformer(model_save_path)
logging.info("Read KorSTS benchmark test dataset")
test_file = os.path.join(sts_dataset_path, "sts-test.tsv")
test_samples = load_kor_sts_samples(test_file)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test")
test_evaluator(model, output_path=model_save_path)