forked from enjoysport2022/ReinforcementLearning_for_stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
37 lines (26 loc) · 1.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import yaml
from stable_baselines3 import PPO, A2C, DDPG, TD3
from util import find_file, prepare_env
# from autox import AutoX
with open('config.yaml') as f:
args = yaml.safe_load(f)
def train_model(env, RL_model='PPO'):
if RL_model == 'A2C':
model = A2C("MlpPolicy", env, verbose=0, tensorboard_log='./log')
elif RL_model == 'PPO':
model = PPO("MlpPolicy", env, verbose=0, tensorboard_log='./log')
elif RL_model == 'DDPG':
model = DDPG("MlpPolicy", env, verbose=0, tensorboard_log='./log')
elif RL_model == 'TD3':
model = TD3("MlpPolicy", env, verbose=0, tensorboard_log='./log')
model.learn(total_timesteps=args['train_args']['total_timesteps'])
return model
def train_strategy(stock_code, RL_model):
stock_file = find_file('./data/tushare_data/train', str(stock_code))
train_env, _ = prepare_env(stock_file)
model = train_model(train_env, RL_model)
os.makedirs('./check_points/', exist_ok=True)
model.save(f"./check_points/{RL_model}_{stock_code}")
if __name__ == '__main__':
train_strategy(args['train_args']['stock_code'], args['train_args']['rl_model'])