forked from enjoysport2022/ReinforcementLearning_for_stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
39 lines (33 loc) · 1.33 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.express as px
from stable_baselines3.common.vec_env import DummyVecEnv
from env.SingleStockEnv import StockTradingEnv
import pandas as pd
def prepare_env(stock_file):
df = pd.read_csv(stock_file)
df = df.sort_values('date')
env = DummyVecEnv([lambda: StockTradingEnv(df)])
return env, len(df)
def find_file(path, name):
for root, dirs, files in os.walk(path):
for fname in files:
if name in fname:
return os.path.join(root, fname)
def plot_daily_profits(stock_code, RL_model, daily_profits, dates, daily_opens, daily_closes, daily_highs, daily_lows):
fig = make_subplots(rows=2, cols=1, subplot_titles=("profit", "daily price"), shared_xaxes=True)
fig.add_trace(
go.Scatter(x=dates, y=daily_profits, mode='lines+markers'),
row=1, col=1
)
fig.add_trace(
go.Candlestick(x=dates,
open=daily_opens, high=daily_highs,
low=daily_lows, close=daily_closes),
row=2, col=1
)
fig.update_layout(xaxis_rangeslider_visible=False, showlegend=False, title_text=f"{stock_code}, {RL_model}")
fig.show()
# os.makedirs('./img/', exist_ok=True)
# fig.write_image(f'./img/{stock_code + "_" + RL_model}.png')