-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
116 lines (92 loc) · 4.01 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# python -m venv venv
# source venv/bin/activate
# pip install -r requirements.txt
from flask import Flask, render_template, Response
from flask_socketio import SocketIO, emit
import pickle
import cv2
import mediapipe as mp
import numpy as np
import warnings
# Suppress specific warnings
warnings.filterwarnings("ignore", message="SymbolDatabase.GetPrototype() is deprecated. Please use message_factory.GetMessageClass() instead.")
app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
socketio = SocketIO(app)
try:
model_dict = pickle.load(open('./model.p', 'rb'))
model = model_dict['model']
except Exception as e:
print("Error loading the model:", e)
model = None
@app.route('/')
def index():
return render_template('index.html')
@socketio.on('connect')
def handle_connect():
print('Client connected')
def generate_frames():
cap = cv2.VideoCapture(0)
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
labels_dict = {
0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', 9: 'J',
10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R', 18: 'S',
19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z', 26: 'Hello',
27: 'Done', 28: 'Thank You', 29: 'I Love you', 30: 'Sorry', 31: 'Please',
32: 'You are welcome.'
}
while True:
data_aux = []
x_ = []
y_ = []
ret, frame = cap.read()
if not ret:
break
frame = cv2.flip(frame, 1) # Flip the frame horizontally
H, W, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style()
)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
x1 = int(min(x_) * W) - 10
y1 = int(min(y_) * H) - 10
x2 = int(max(x_) * W) - 10
y2 = int(max(y_) * H) - 10
try:
prediction = model.predict([np.asarray(data_aux)])
prediction_proba = model.predict_proba([np.asarray(data_aux)])
confidence = max(prediction_proba[0]) # Get the highest confidence score
predicted_character = labels_dict[int(prediction[0])]
socketio.emit('prediction', {'text': predicted_character, 'confidence': confidence})
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), 4)
cv2.putText(frame, f"{predicted_character} ({confidence*100:.2f}%)", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 0, 0), 3, cv2.LINE_AA)
except Exception as e:
pass
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/video_feed')
def video_feed():
return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
socketio.run(app, debug=True)