This repository is built in PyTorch 1.8.1 and tested on Ubuntu 18.04 environment (Python3.8, CUDA11.6, cuDNN8.5). Follow these intructions
- Clone our repository
git clone https://github.com/va1shn9v/PromptIR.git
cd PromptIR
- Create conda environment The Conda environment used can be recreated using the env.yml file
conda env create -f env.yml
All the 5 datasets used in the paper can be downloaded from the following locations:
Denoising: BSD400, WED, Urban100
Deraining: Train100L&Rain100L
Dehazing: RESIDE (OTS)
The training data should be placed in data/Train/{task_name}
directory where task_name
can be Denoise,Derain or Dehaze.
After placing the training data the directory structure would be as follows:
└───Train
├───Dehaze
│ ├───original
│ └───synthetic
├───Denoise
└───Derain
├───gt
└───rainy
The testing data should be placed in the test
directory wherein each task has a seperate directory. The test directory after setup:
├───dehaze
│ ├───input
│ └───target
├───denoise
│ ├───bsd68
│ └───urban100
└───derain
└───Rain100L
├───input
└───target