forked from AliaksandrSiarohin/first-order-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cartoon-generator-terminal.py
304 lines (218 loc) · 11.3 KB
/
cartoon-generator-terminal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import glob
import json
import os
import shutil
import subprocess
import cv2
import numpy
from PIL import Image, ImageDraw, ImageFont
########################################################################
### PARSE INPUT JSONS ###
########################################################################
def get_files_data(file):
file = open(file)
data = json.load(file)
file.close()
return data
########################################################################
### PARSE INPUT DATA ###
########################################################################
def get_character(words, characters_json):
return characters_json[words[0]]["file"]
def get_action(words, characters_json, actions_json):
if characters_json[words[0]]["type"] == "humanoid":
return actions_json[words[1]]["file_for_humanoid"]
elif characters_json[words[0]]["type"] == "quadruped":
return actions_json[words[1]]["file_for_quadruped"]
elif characters_json[words[0]]["type"] == "flying":
return actions_json[words[1]]["file_for_flying"]
def get_place(words, places_json):
if len(words) < 3 or words[2] not in places_json:
return
return places_json[words[2]]
########################################################################
### GENERATE DEMO ###
########################################################################
def exec_terminal_command(fps, image, video, result):
os.chdir("fom")
subprocess.run([
"python", "demo.py", "--fps", f"{fps}", "--config", "config/mgif-256.yaml", "--driving_video",
f"drv_video/{video}", "--source_image", f"src_image/{image}", "--checkpoint",
"checkpoints/mgif-cpk.pth.tar", "--result_video", f"../results/{result}", "--relative", "--adapt_scale"
], shell=True)
os.chdir("..")
print("FOM demo generation successful!")
########################################################################
### EXTRACT FRAMES ###
########################################################################
# TODO: alternativa pt scriere fizica de fisiere (ca nu e eficienta)
def extract_frames(gif):
vid_cap = cv2.VideoCapture(gif)
success, image = vid_cap.read()
count = 0
while success:
if not os.path.exists(f"{gif[:-4]}-frames"):
os.makedirs(f"{gif[:-4]}-frames")
cv2.imwrite(f"{gif[:-4]}-frames/frame%02d.png" % count, image) # save frame as JPEG file
success, image = vid_cap.read()
count += 1
print("Frames extraction successful!")
########################################################################
### REMOVE FRAMES BACKGROUNDS AND WRITE THEM ###
########################################################################
def extract_frames_transparent(frames_dir_path):
count = 0
if not os.path.exists(f"{frames_dir_path}-transparent"):
os.makedirs(f"{frames_dir_path}-transparent")
for img_path in glob.glob(f"{frames_dir_path}/*"):
img = cv2.imread(img_path)
# Convert to gray
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Threshold input image as mask
mask = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY)[1]
# Negate mask
mask = 255 - mask
# Apply morphology to remove isolated extraneous noise
# Use border constant of black since foreground touches the edges
kernel = numpy.ones((3, 3), numpy.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
# Anti-alias the mask -- blur then stretch
# Blur alpha channel
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2, sigmaY=2, borderType=cv2.BORDER_DEFAULT)
# Linear stretch so that 127.5 goes to 0, but 255 stays 255
mask = (2 * (mask.astype(numpy.float32)) - 255.0).clip(0, 255).astype(numpy.uint8)
# Put mask into alpha channel
result = img.copy()
result = cv2.cvtColor(result, cv2.COLOR_BGR2BGRA)
result[:, :, 3] = mask
cv2.imwrite(f"{frames_dir_path}-transparent/frame%02d.png" % count, result)
count += 1
print("Removed extracted frames background!")
########################################################################
### GENERATE GIF WITH BACKGROUND ###
########################################################################
def overlap_gif_on_background(foreground, background, size, offset):
for current_frame in foreground:
current_background = background.copy()
current_foreground = current_frame.convert(mode="RGBA").resize(size)
current_background.alpha_composite(current_foreground, dest=offset)
yield current_background
def generate_gif_with_background(fg_frames_dir_path, bg_image_path, frames_count):
images = []
for frame in range(frames_count):
images.append(Image.open(f"{fg_frames_dir_path}/frame%02d.png" % frame))
bg_image = Image.open(bg_image_path).convert(mode="RGBA")
frames = tuple(overlap_gif_on_background(images, bg_image, (300, 300), (100, 300)))
frames[0].save(f'{fg_frames_dir_path[:-19]}.gif', save_all=True, append_images=frames[1:], loop=0, duration=30)
print("GIF overlap on background successful!")
########################################################################
### GENERATE GIF WITH ONLY TEXT ###
########################################################################
def create_image_with_text(text, font, color, offset):
img = Image.new('RGBA', (400, 400))
draw = ImageDraw.Draw(img)
draw.text((offset[0], offset[1]), text, font=font, fill=color)
return img
def create_text_animation_frames(text, font, color, offset):
x, y = offset
frames = []
for i in range(len(text) + 20):
if i < len(text):
new_frame = create_image_with_text(text[:i], font, color, (x, y))
else:
new_frame = create_image_with_text(text, font, color, (x, y))
frames.append(new_frame)
print("Generated text animation!")
return frames
########################################################################
### GENERATE GIF WITH TEXT AND ANIMATION ###
########################################################################
def generate_gif_with_text(text, bg_frames_dir_path):
frames_bg = []
frames_fg = create_text_animation_frames(text, ImageFont.truetype('arial', 20), "black", (0, 0))
for frame in range(Image.open(f"{bg_frames_dir_path[:-7]}.gif").n_frames):
frames_bg.append(Image.open(f"{bg_frames_dir_path}/frame%02d.png" % frame).convert("RGBA"))
longest = len(frames_fg) if len(frames_fg) > len(frames_bg) else len(frames_bg)
results = []
for i in range(longest):
i_bg = i % len(frames_bg)
i_fg = i % len(frames_fg)
bg = frames_bg[i_bg].copy()
fg = frames_fg[i_fg].copy()
bg.alpha_composite(fg, (0, 0))
results.append(bg)
results[0].save(f"{bg_frames_dir_path[:-7]}.gif", save_all=True, append_images=results[1:], loop=0, duration=30)
print("Text overlap on GIF successful!")
########################################################################
### GENERATE THE CARTOON ANIMATION ###
########################################################################
if __name__ == '__main__':
# Split phrases into sentences
phrase = input("Enter the sentence: ").split('. ')
gifs = []
for sentence in phrase:
is_text_given = False
say_verb = "spune"
# If the 'say' verb is parsed, split the given story from the character's dialogue
if say_verb in sentence:
is_text_given = True
sentence, text = sentence.split(": ")
# Split the words from the story part
sentence = sentence.split()
# Read the characters and actions JSONs and parse their data
characters_data = get_files_data("characters.json")
actions_data = get_files_data("actions.json")
places_data = get_files_data("places.json")
# Make a variable for the driving image and store in it the "file" attribute from the given character
image = get_character(sentence, characters_data)
# Make a variable for the driving video and store in it the corresponding file attribute
# depending on the noun's "type" attribute
video = get_action(sentence, characters_data, actions_data)
# Make a variable for an optional background image
place = get_place(sentence, places_data)
is_place_given = place is not None
# Generate a name for the result file with given character and action separated by "_"
result = f"{sentence[0]}-{sentence[1]}-{sentence[2]}.gif" if is_place_given \
else f"{sentence[0]}-{sentence[1]}.gif"
# Generate the demo using the created variables for files names inputs
exec_terminal_command(30, image, video, result)
# If there is a place given, generate background
if is_place_given:
# Get the resulted GIF as input and remove its white background
extract_frames(f"results/{result}")
extract_frames_transparent(f"results/{result[:-4]}-frames")
# Create a new GIF and overlap it on the background image
frames_count = Image.open(f"results/{result}").n_frames
generate_gif_with_background(f"results/{result[:-4]}-frames-transparent",
f"cartoon_env/{place}", frames_count)
# If the 'say' verb is parsed, animate character dialogue
if is_text_given:
# Get the resulted GIF as input
extract_frames(f"results/{result}")
# Create a new GIF with text and overlap it on the old GIF without text
generate_gif_with_text(text, f"results/{result[:-4]}-frames")
# Add GIF path to list to be able to create one animation with multiple GIFs
gifs.append(f"results/{result}")
# Clean-up
if is_place_given or is_text_given:
if is_place_given:
shutil.rmtree(f"results/{result[:-4]}-frames-transparent")
shutil.rmtree(f"results/{result[:-4]}-frames")
os.startfile(os.path.normpath(f"results/{result}"))
print(f'GIF {result} generated successfully!')
# Only if the paragraph is composed of more than one sentences
if len(phrase) > 1:
frames = []
for gif in gifs:
extract_frames(gif)
for frame in range(Image.open(gif).n_frames):
frames.append(Image.open(f"{gif[:-4]}-frames/frame%02d.png" % frame))
frames[0].save('results/animation.gif', save_all=True, append_images=frames[1:], loop=0, duration=30)
# Clean-up
for gif in gifs:
shutil.rmtree(f"{gif[:-4]}-frames")
os.startfile(os.path.normpath(f"results/animation.gif"))
print(f'Final GIF generated successfully!')
# TODO: cand se genereaza gif-ul final din mai multe gif-uri, sa se incadreze toate la dimensiunea celui mai mare
# TODO: sa fac textul sa o ia de pe randul urmator cand nu mai are loc in imagine