Skip to content

Latest commit

 

History

History
241 lines (153 loc) · 21.9 KB

hashing.md

File metadata and controls

241 lines (153 loc) · 21.9 KB

Хэширование в строковых задачах

Хэш — это какая-то функция, сопоставляющая объектам какого-то множества числовые значения из ограниченного промежутка.

«Хорошая» хэш-функция:

  • Быстро считается — за линейное от размера объекта время;
  • Имеет не очень большие значения — влезающие в 64 бита;
  • «Детерминированно-случайная» — если хэш может принимать $n$ различных значений, то вероятность того, что хэши от двух случайных объектов совпадут, равна примерно $\frac{1}{n}$.

Обычно хэш-функция не является взаимно однозначной: одному хэшу может соответствовать много объектов. Такие функции называют сюръективными.

Для некоторых задач удобнее работать с хэшами, чем с самими объектами. Пусть даны $n$ строк длины $m$, и нас просят $q$ раз проверять произвольные две на равенство. Вместо наивной проверки за $O(q \cdot n \cdot m)$, мы можем посчитать хэши всех строк, сохранить, и во время ответа на запрос сравнивать два числа, а не две строки.

Применения в реальной жизни

  • Чек-суммы. Простой и быстрый способ проверить целостность большого передаваемого файла — посчитать хэш-функцию на стороне отправителя и на стороне получателя и сравнить.
  • Хэш-таблица. Класс unordered_set из STL можно реализовать так: заведём $n$ изначально пустых односвязных списков. Возьмем какую-нибудь хэш-функцию $f$ с областью значений $[0, n)$. При обработке .insert(x) мы будем добавлять элемент $x$ в $f(x)$-тый список. При ответе на .find(x) мы будем проверять, лежит ли $x$-тый элемент в $f(x)$-том списке. Благодаря «равномерности» хэш-функции, после $k$ добавлений ожидаемое количество сравнений будет равно $\frac{k}{n}$ = $O(1)$ при правильном выборе $n$.
  • Мемоизация. В динамическом программировании нам иногда надо работать с состояниями, которые непонятно как кодировать, чтобы «разгладить» в массив. Пример: шахматные позиции. В таком случае нужно писать динамику рекурсивно и хранить подсчитанные значения в хэш-таблице, а для идентификации состояния использовать его хэш.
  • Проверка на изоморфизм. Если нам нужно проверить, что какие-нибудь сложные структуры (например, деревья) совпадают, то мы можем придумать для них хэш-функцию и сравнивать их хэши аналогично примеру со строками.
  • Криптография. Правильнее и безопаснее хранить хэши паролей в базе данных вместо самих паролей — хэш-функцию нельзя однозначно восстановить.
  • Поиск в многомерных пространствах. Детерминированный поиск ближайшей точки среди $m$ точек в $n$-мерном пространстве быстро не решается. Однако можно придумать хэш-функцию, присваивающую лежащим рядом элементам одинаковые хэши, и делать поиск только среди элементов с тем же хэшом, что у запроса.

Хэшируемые объекты могут быть самыми разными: строки, изображения, графы, шахматные позиции, просто битовые файлы.

Сегодня же мы остановимся на строках.

Полиномиальное хэширование

Лайфхак: пока вы не выучили все детерминированные строковые алгоритмы, научитесь пользоваться хэшами.

Будем считать, что строка — это последовательность чисел от $1$ до $m$ (размер алфавита). В C++ char это на самом деле тоже число, поэтому можно вычитать из символов минимальный код и кастовать в число: int x = (int) (c - 'a' + 1).

Определим прямой полиномиальный хэш строки как значение следующего многочлена:

$$ h_f = (s_0 + s_1 k + s_2 k^2 + \ldots + s_n k^n) \mod p $$

Здесь $k$ — произвольное число больше размера алфавита, а $p$ — достаточно большой модуль, вообще говоря, не обязательно простой.

Его можно посчитать за линейное время, поддерживая переменную, равную нужной в данный момент степени $k$:

const int k = 31, mod = 1e9+7;

string s = "abacabadaba";
long long h = 0, m = 1;
for (char c : s) {
    int x = (int) (c - 'a' + 1);
    h = (h + m * x) % mod;
    m = (m * k) % mod;
}

Можем ещё определить обратный полиномиальный хэш:

$$ h_b = (s_0 k^n + s_1 k^{n-1} + \ldots + s_n) \mod p $$

Его преимущество в том, что можно написать на одну строчку кода меньше:

long long h = 0;
for (char c : s) {
    int x = (int) (c - 'a' + 1);
    h = (h * k + x) % mod;
}

Автору проще думать об обычных многочленах, поэтому он будет везде использовать прямой полиномиальный хэш и обозначать его просто буквой $h$.

Зачем это нужно?

Используя тот факт, что хэш это значение многочлена, можно быстро пересчитывать хэш от результата выполнения многих строковых операций.

Например, если нужно посчитать хэш от конкатенации строк $a$ и $b$ (т. е. $b$ приписали в конец строки $a$), то можно просто хэш $b$ домножить на $k^{|a|}$ и сложить с хэшом $a$:

$$ h(ab) = h(a) + k^{|a|} \cdot h(b) $$

Удалить префикс строки можно так:

$$ h(b) = \frac{h(ab) - h(a)}{k^{|a|}} $$

А суффикс — ещё проще:

$$ h(a) = h(ab) - k^{|a|} \cdot h(b) $$

В задачах нам часто понадобится домножать $k$ в какой-то степени, поэтому имеет смысл предпосчитать все нужные степени и сохранить в массиве:

const int maxn = 1e5+5;

int p[maxn];
p[0] = 1;

for (int i = 1; i < maxn; i++)
    p[i] = (p[i-1] * k) % mod;

Как это использовать в реальных задачах? Пусть нам надо отвечать на запросы проверки на равенство произвольных подстрок одной большой строки. Подсчитаем значение хэш-функции для каждого префикса:

int h[maxn];
h[0] = 0; // h[k] -- хэш префикса длины k

// будем считать, что s это уже последовательность int-ов

for (int i = 0; i < n; i++) 
    h[i+1] = (h[i] + p[i] * s[i]) % mod;

Теперь с помощью этих префиксных хэшей мы можем определить функцию, которая будет считать хэш на произвольном подотрезке:

$$ h(s[l:r]) = \frac{h_r-h_l}{k^l} $$

Деление по модулю возможно делать только при некоторых k и mod (а именно — при взаимно простых). В любом случае, писать его долго, и мы это делать не хотим.

Для нашей задачи не важно получать именно полиномиальный хэш — главное, чтобы наша функция возвращала одинаковый многочлен от одинаковых подстрок. Вместо приведения к нулевой степени приведём многочлен к какой-нибудь достаточно большой — например, к $n$-ной. Так проще — нужно будет домножать, а не делить.

$$ \hat{h}(s[l:r]) = k^{n-l} (h_r-h_l) $$

int hash_substring (int l, int r) {
    return (h[r+1] - h[l]) * p[n-l] % mod;
}

Теперь мы можем просто вызывать эту функцию от двух отрезков и сравнивать числовое значение, отвечая на запрос за $O(1)$.

Упражнение. Напишите то же самое, но используя обратный полиномиальный хэш — этот способ тоже имеет право на существование, и местами он даже проще. Обратный хэш подстроки принято считать и использовать в стандартном виде из определения, поскольку там нет необходимости в делении.

Лайфхак. Если взять обратный полиномиальный хэш короткой строки на небольшом алфавите с $k=10$, то числовое значение хэша строки будет наглядно соотноситься с самой строкой:

$$ h(abacaba)=1213121 $$

Этим удобно пользоваться при дебаге.

Примеры задач

Количество разных подстрок. Посчитаем хэши от всех подстрок за $O(n^2)$ и добавим их все в std::set. Чтобы получить ответ, просто вызовем set.size().

Поиск подстроки в строке. Можно посчитать хэши от шаблона (строки, которую ищем) и пройтись «окном» размера шаблона по тексту, поддерживая хэш текущей подстроки. Если хэш какой-то из этих подстрок совпал с хэшом шаблона, то мы нашли нужную подстроку. Это называется алгоритмом Рабина-Карпа.

Сравнение строк (больше-меньше, а не только равенство). У любых двух строк есть какой-то общий префикс (возможно, пустой). Сделаем бинпоиск по его длине, а дальше сравним два символа, идущие за ним.

Палиндромность подстроки. Можно посчитать два массива — обратные хэши и прямые. Проверка на палиндром будет заключаться в сравнении значений hash_substring() на первом массиве и на втором.

Количество палиндромов. Можно перебрать центр палиндрома, а для каждого центра — бинпоиском его размер. Проверять подстроку на палиндромность мы уже умеем. Как и всегда в задачах на палиндромы, случаи четных и нечетных палиндромов нужно обрабатывать отдельно.

Хранение строк в декартовом дереве

Если для вас всё вышеперечисленное тривиально: можно делать много клёвых вещей, если «оборачивать» строки в декартово дерево. В вершине дерева можно хранить символ, а также хэш подстроки, соответствующей её поддереву. Чтобы поддерживать хэш, нужно просто добавить в upd() пересчёт хэша от конкатенации трёх строк — левого сына, своего собственного символа и правого сына.

Имея такое дерево, мы можем обрабатывать запросы, связанные с изменением строки: удаление и вставка символа, перемещение и переворот подстрок, а если дерево персистентное — то и копирование подстрок. При запросе хэша подстроки нам, как обычно, нужно просто вырезать нужную подстроку и взять хэш, который будет лежать в вершине-корне.

Если нам не нужно обрабатывать запросы вставки и удаления символов, а, например, только изменения, то можно использовать и дерево отрезков вместо декартова.

Вероятность ошибки и почему это всё вообще работает

У алгоритмов, использующих хэширование, есть один неприятный недостаток: недетерминированность. Если мы сгенерируем бесконечное количество примеров, то когда-нибудь нам не повезет, и программа отработает неправильно. На CodeForces даже иногда случаются взломы решений, использующих хэширование — можно в оффлайне сгенерировать тест против конкретного решения.

Событие, когда два хэша совпали, а не должны, называется коллизией. Пусть мы решаем задачу определения количества различных подстрок — мы добавляем в set $O(n^2)$ различных случайных значений в промежутке $[0, m)$. Понятно, что если произойдет коллизия, то мы какую-то строку не учтем и получим WA. Насколько большим следует делать $m$, чтобы не бояться такого?

Выбор констант

Практическое правило: если вам нужно хранить $n$ различных хэшей, то безопасный модуль — это число порядка $10 \cdot n^2$. Обоснование — см. парадокс дней рождений.

Не всегда такой можно выбрать один — если он будет слишком большой, будут происходить переполнения. Вместо этого можно брать два или даже три модуля и считать много хэшей параллельно.

Можно также брать модуль $2^{64}$. У него есть несколько преимуществ:

  • Он большой — второй модуль точно не понадобится.
  • С ним ни о каких переполнениях заботиться не нужно — если все хранить в unsigned long long, процессор сам автоматически сделает эти взятия остатков при переполнении.
  • С ним хэширование будет быстрее — раз переполнение происходит на уровне процессора, можно не выполнять долгую операцию %.

Всё с этим модулем было прекрасно, пока не придумали тест против него. Однако, его добавляют далеко не на все контесты — имейте это в виду.

В выборе же $k$ ограничения не такие серьезные:

  • Она должна быть чуть больше размера словаря — иначе можно изменить две соседние буквы и получить коллизию.
  • Она должна быть взаимно проста с модулем — иначе в какой-то момент всё может занулиться.

Главное — чтобы значения $k$ и модуля не знал человек, который генерирует тесты.

Парадокс дней рождений

В группе, состоящей из 23 или более человек, вероятность совпадения дней рождения хотя бы у двух людей превышает 50%.

Более общее утверждение: в мультимножество нужно добавить $\Theta(\sqrt{n})$ случайных чисел от 1 до n, чтобы какие-то два совпали.

Первое доказательство (для любителей матана). Пусть $f(n, d)$ это вероятность того, что в группе из $n$ человек ни у кого не совпали дни рождения. Будем считать, что дни рождения распределены независимо и равномерно в промежутке от $1$ до $d$.

$$ f(n, d) = (1-\frac{1}{d}) \times (1-\frac{2}{d}) \times ... \times (1-\frac{n-1}{d}) $$

Попытаемся оценить $f$:

$$ \begin{aligned} e^x & = 1 + x + \frac{x^2}{2!} + \ldots & \text{(ряд Тейлора для экспоненты)} \\ & \simeq 1 + x & \text{(аппроксимация для $|x| \ll 1$)} \\ e^{-\frac{n}{d}} & \simeq 1 - \frac{n}{d} & \text{(подставим $\frac{n}{d} \ll 1$)} \\ f(n, d) & \simeq e^{-\frac{1}{d}} \times e^{-\frac{2}{d}} \times \ldots \times e^{-\frac{n-1}{d}} & \\ & = e^{-\frac{n(n-1)}{2d}} & \\ & \simeq e^{-\frac{n^2}{2d}} & \\ \end{aligned} $$

Из последнего выражения более-менее понятно, что вероятность $\frac{1}{2}$ достигается при $n \approx \sqrt{d}$ и в этой точке изменяется очень быстро.

Второе доказательство (для любителей теорвера). Введем $\frac{n(n-1)}{2}$ индикаторов — по одному для каждой пары людей $(i, j)$ — каждый будет равен единице, если дни рождения совпали. Ожидание и вероятность каждого индикатора равна $\frac{1}{d}$.

Обозначим за $X$ число совпавших дней рождений. Его ожидание равно сумме ожиданий этих индикаторов, то есть $\frac{n (n-1)}{2} \cdot \frac{1}{d}$.

Отсюда понятно, что если $d = \Theta(n^2)$, то ожидание равно константе, а если $d$ асимптотически больше или меньше, то $X$ стремится нулю или бесконечности соответственно.

Примечание: формально, из этого явно не следует, что вероятности тоже стремятся к 0 и 1.

Бонус: «мета-задача»

Дана произвольная строка, по которой известным только авторам задачи способом генерируется ответ yes/no. В задаче 100 тестов. У вас есть 20 попыток отослать решение. В качестве фидбэка вам доступны вердикты на каждом тесте. Вердиктов всего два: OK (ответ совпал) и WA. Попытки поделить на ноль, выделить терабайт памяти и подобное тоже считаются как WA.

«Решите» задачу.