diff --git a/build/pkgs/configure/checksums.ini b/build/pkgs/configure/checksums.ini index f35c061f7c4..36b788e296d 100644 --- a/build/pkgs/configure/checksums.ini +++ b/build/pkgs/configure/checksums.ini @@ -1,4 +1,4 @@ tarball=configure-VERSION.tar.gz -sha1=f4a7dd60c09ac2f3e1f8e388cbf2a527dcd5547c -md5=c16cb118d9ad6a495f6c5d509b2ec570 -cksum=3417350968 +sha1=f7b6730426fe857cb7036a0daae23aca7cb03dec +md5=e6d2b686e56ef1e5ecb5f248255870f7 +cksum=3124816602 diff --git a/build/pkgs/configure/package-version.txt b/build/pkgs/configure/package-version.txt index 9ceddfa865f..2094519a0c4 100644 --- a/build/pkgs/configure/package-version.txt +++ b/build/pkgs/configure/package-version.txt @@ -1 +1 @@ -ab1a517b64b02bf15bbcb8d7c2d4d643bd5eff9b +1db16f5f41fb1fa9cc6c6e4506d2a44d931d3dbe diff --git a/src/sage/schemes/generic/glue.py b/src/sage/schemes/generic/glue.py index 76bd9a1ab9e..e70aafa0507 100644 --- a/src/sage/schemes/generic/glue.py +++ b/src/sage/schemes/generic/glue.py @@ -16,19 +16,35 @@ class GluedScheme(scheme.Scheme): INPUT: - - ``f`` - open immersion from a scheme U to a scheme - X + - ``f`` -- open immersion from a scheme `U` to a scheme + `X` - - ``g`` - open immersion from U to a scheme Y + - ``g`` -- open immersion from `U` to a scheme `Y` - OUTPUT: The scheme obtained by gluing X and Y along the open set - U. + OUTPUT: The scheme obtained by gluing `X` and `Y` along the open set + `U`. - .. note:: + .. NOTE:: Checking that `f` and `g` are open immersions is not implemented. + + EXAMPLES:: + + sage: R.<x, y> = QQ[] + sage: S.<xbar, ybar> = R.quotient(x * y - 1) + sage: Rx = QQ["x"] + sage: Ry = QQ["y"] + sage: phi_x = Rx.hom([xbar]) + sage: phi_y = Ry.hom([ybar]) + sage: Sx = Schemes()(phi_x) + sage: Sy = Schemes()(phi_y) + sage: Sx.glue_along_domains(Sy) + Scheme obtained by gluing X and Y along U, where + X: Spectrum of Univariate Polynomial Ring in x over Rational Field + Y: Spectrum of Univariate Polynomial Ring in y over Rational Field + U: Spectrum of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x*y - 1) """ def __init__(self, f, g, check=True): if check: @@ -42,6 +58,23 @@ def __init__(self, f, g, check=True): self.__g = g def gluing_maps(self): + r""" + Return the gluing maps of this glued scheme, i.e. the maps `f` and `g`. + + EXAMPLES:: + + sage: R.<x, y> = QQ[] + sage: S.<xbar, ybar> = R.quotient(x * y - 1) + sage: Rx = QQ["x"] + sage: Ry = QQ["y"] + sage: phi_x = Rx.hom([xbar]) + sage: phi_y = Ry.hom([ybar]) + sage: Sx = Schemes()(phi_x) + sage: Sy = Schemes()(phi_y) + sage: Sxy = Sx.glue_along_domains(Sy) + sage: Sxy.gluing_maps() == (Sx, Sy) + True + """ return self.__f, self.__g def _repr_(self): diff --git a/src/sage/schemes/generic/homset.py b/src/sage/schemes/generic/homset.py index 54b89416125..6fca9c1e257 100644 --- a/src/sage/schemes/generic/homset.py +++ b/src/sage/schemes/generic/homset.py @@ -2,13 +2,13 @@ Set of homomorphisms between two schemes For schemes `X` and `Y`, this module implements the set of morphisms -`Hom(X,Y)`. This is done by :class:`SchemeHomset_generic`. +`\mathrm{Hom}(X,Y)`. This is done by :class:`SchemeHomset_generic`. -As a special case, the Hom-sets can also represent the points of a -scheme. Recall that the `K`-rational points of a scheme `X` over `k` -can be identified with the set of morphisms `Spec(K) \to X`. In Sage -the rational points are implemented by such scheme morphisms. This is -done by :class:`SchemeHomset_points` and its subclasses. +As a special case, the Hom-sets can also represent the points of a scheme. +Recall that the `K`-rational points of a scheme `X` over `k` can be identified +with the set of morphisms `\mathrm{Spec}(K) \to X`. In Sage the rational points +are implemented by such scheme morphisms. This is done by +:class:`SchemeHomset_points` and its subclasses. .. note:: @@ -407,12 +407,12 @@ def _element_constructor_(self, x, check=True): # ******************************************************************* class SchemeHomset_points(SchemeHomset_generic): - """ + r""" Set of rational points of the scheme. - Recall that the `K`-rational points of a scheme `X` over `k` can - be identified with the set of morphisms `Spec(K) \to X`. In Sage, - the rational points are implemented by such scheme morphisms. + Recall that the `K`-rational points of a scheme `X` over `k` can be + identified with the set of morphisms `\mathrm{Spec}(K) \to X`. In Sage, the + rational points are implemented by such scheme morphisms. If a scheme has a finite number of points, then the homset is supposed to implement the Python iterator interface. See @@ -659,13 +659,13 @@ def _element_constructor_(self, *v, **kwds): return self.extended_codomain()._point(self, v, **kwds) def extended_codomain(self): - """ + r""" Return the codomain with extended base, if necessary. OUTPUT: The codomain scheme, with its base ring extended to the - codomain. That is, the codomain is of the form `Spec(R)` and + codomain. That is, the codomain is of the form `\mathrm{Spec}(R)` and the base ring of the domain is extended to `R`. EXAMPLES:: @@ -716,8 +716,8 @@ def _repr_(self): return 'Set of rational points of '+str(self.extended_codomain()) def value_ring(self): - """ - Return `R` for a point Hom-set `X(Spec(R))`. + r""" + Return `R` for a point Hom-set `X(\mathrm{Spec}(R))`. OUTPUT: diff --git a/src/sage/schemes/generic/morphism.py b/src/sage/schemes/generic/morphism.py index 31dc4010f5b..7d91214e32a 100644 --- a/src/sage/schemes/generic/morphism.py +++ b/src/sage/schemes/generic/morphism.py @@ -28,12 +28,12 @@ new Hom-set class does not use ``MyScheme._morphism`` then you do not have to provide it. -Note that points on schemes are morphisms `Spec(K)\to X`, too. But we -typically use a different notation, so they are implemented in a -different derived class. For this, you should implement a method +Note that points on schemes are morphisms `\mathrm{Spec}(K)\to X`, too. But we +typically use a different notation, so they are implemented in a different +derived class. For this, you should implement a method -* ``MyScheme._point(*args, **kwds)`` returning a point, that is, - a morphism `Spec(K)\to X`. Your point class should derive from +* ``MyScheme._point(*args, **kwds)`` returning a point, that is, a morphism + `\mathrm{Spec}(K)\to X`. Your point class should derive from :class:`SchemeMorphism_point`. Optionally, you can also provide a special Hom-set for the points, for @@ -1790,11 +1790,11 @@ def __init__(self, X): ############################################################################ class SchemeMorphism_point(SchemeMorphism): - """ + r""" Base class for rational points on schemes. Recall that the `K`-rational points of a scheme `X` over `k` can - be identified with the set of morphisms `Spec(K) \to X`. In Sage, + be identified with the set of morphisms `\mathrm{Spec}(K) \to X`. In Sage, the rational points are implemented by such scheme morphisms. EXAMPLES:: diff --git a/src/sage/schemes/generic/point.py b/src/sage/schemes/generic/point.py index 5f8f3d024a6..7ef85645f56 100644 --- a/src/sage/schemes/generic/point.py +++ b/src/sage/schemes/generic/point.py @@ -227,28 +227,3 @@ def _richcmp_(self, other, op): False """ return richcmp(self.__P, other.__P, op) - -######################################################## -# Points on a scheme defined by a morphism -######################################################## - -def is_SchemeRationalPoint(x): - return isinstance(x, SchemeRationalPoint) - -class SchemeRationalPoint(SchemePoint): - def __init__(self, f): - """ - INPUT: - - - - ``f`` - a morphism of schemes - """ - SchemePoint.__init__(self, f.codomain(), parent=f.parent()) - self.__f = f - - def _repr_(self): - return "Point on %s defined by the morphism %s" % (self.scheme(), - self.morphism()) - - def morphism(self): - return self.__f diff --git a/src/sage/schemes/generic/scheme.py b/src/sage/schemes/generic/scheme.py index 1c66ce9bb33..2c0e3100c86 100644 --- a/src/sage/schemes/generic/scheme.py +++ b/src/sage/schemes/generic/scheme.py @@ -77,7 +77,7 @@ class Scheme(Parent): sage: ProjectiveSpace(4, QQ).category() Category of schemes over Rational Field - There is a special and unique `Spec(\ZZ)` that is the default base + There is a special and unique `\mathrm{Spec}(\ZZ)` that is the default base scheme:: sage: Spec(ZZ).base_scheme() is Spec(QQ).base_scheme() @@ -267,7 +267,7 @@ def __call__(self, *args): @cached_method def point_homset(self, S=None): - """ + r""" Return the set of S-valued points of this scheme. INPUT: @@ -276,7 +276,7 @@ def point_homset(self, S=None): OUTPUT: - The set of morphisms `Spec(S)\to X`. + The set of morphisms `\mathrm{Spec}(S) \to X`. EXAMPLES::