forked from EmbersArc/SCvx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfixedfinaltime.py
146 lines (111 loc) · 4.6 KB
/
fixedfinaltime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from time import time
import numpy as np
from FixedFinalTime.parameters import *
from FixedFinalTime.discretization import FirstOrderHold
from FixedFinalTime.scproblem import SCProblem
from utils import format_line, save_arrays
# from Models.diffdrive_2d import Model
# from Models.diffdrive_2d_plot import plot
from Models.rocket_landing_3d_experimental import Model
from Models.rocket_landing_3d_plot import plot
"""
Python implementation of the Successive Convexification algorithm.
Rocket trajectory model based on the
'Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time' paper
by Michael Szmuk and Behçet Açıkmeşe.
Implementation by Sven Niederberger (s-niederberger@outlook.com)
"""
m = Model()
m.nondimensionalize()
# state and input
X = np.empty(shape=[m.n_x, K])
U = np.empty(shape=[m.n_u, K])
# INITIALIZATION--------------------------------------------------------------------------------------------------------
sigma = m.t_f_guess
X, U = m.initialize_trajectory(X, U)
# START SUCCESSIVE CONVEXIFICATION--------------------------------------------------------------------------------------
all_X = [m.x_redim(X.copy())]
all_U = [m.u_redim(U.copy())]
integrator = FirstOrderHold(m, K, sigma)
problem = SCProblem(m, K)
last_nonlinear_cost = None
converged = False
for it in range(iterations):
t0_it = time()
print('-' * 50)
print('-' * 18 + f' Iteration {str(it + 1).zfill(2)} ' + '-' * 18)
print('-' * 50)
t0_tm = time()
A_bar, B_bar, C_bar, z_bar = integrator.calculate_discretization(X, U)
print(format_line('Time for transition matrices', time() - t0_tm, 's'))
problem.set_parameters(A_bar=A_bar, B_bar=B_bar, C_bar=C_bar, z_bar=z_bar,
X_last=X, U_last=U,
weight_nu=w_nu, tr_radius=tr_radius)
while True:
error = problem.solve(verbose=verbose_solver, solver=solver, max_iters=200)
print(format_line('Solver Error', error))
# get solution
new_X = problem.get_variable('X')
new_U = problem.get_variable('U')
X_nl = integrator.integrate_nonlinear_piecewise(new_X, new_U)
linear_cost_dynamics = np.linalg.norm(problem.get_variable('nu'), 1)
nonlinear_cost_dynamics = np.linalg.norm(new_X - X_nl, 1)
linear_cost_constraints = m.get_linear_cost()
nonlinear_cost_constraints = m.get_nonlinear_cost(X=new_X, U=new_U)
linear_cost = linear_cost_dynamics + linear_cost_constraints # J
nonlinear_cost = nonlinear_cost_dynamics + nonlinear_cost_constraints # L
if last_nonlinear_cost is None:
last_nonlinear_cost = nonlinear_cost
X = new_X
U = new_U
break
actual_change = last_nonlinear_cost - nonlinear_cost # delta_J
predicted_change = last_nonlinear_cost - linear_cost # delta_L
print('')
print(format_line('Virtual Control Cost', linear_cost_dynamics))
print(format_line('Constraint Cost', linear_cost_constraints))
print('')
print(format_line('Actual change', actual_change))
print(format_line('Predicted change', predicted_change))
print('')
if abs(predicted_change) < 1e-6:
converged = True
break
else:
rho = actual_change / predicted_change
if rho < rho_0:
# reject solution
tr_radius /= alpha
print(f'Trust region too large. Solving again with radius={tr_radius}')
else:
# accept solution
X = new_X
U = new_U
print('Solution accepted.')
if rho < rho_1:
print('Decreasing radius.')
tr_radius /= alpha
elif rho >= rho_2:
print('Increasing radius.')
tr_radius *= beta
last_nonlinear_cost = nonlinear_cost
break
problem.set_parameters(tr_radius=tr_radius)
print('-' * 50)
print('')
print(format_line('Time for iteration', time() - t0_it, 's'))
print('')
all_X.append(m.x_redim(X.copy()))
all_U.append(m.u_redim(U.copy()))
if converged:
print(f'Converged after {it + 1} iterations.')
break
all_X = np.stack(all_X)
all_U = np.stack(all_U)
all_sigma = np.ones(K) * sigma
if not converged:
print('Maximum number of iterations reached without convergence.')
# save trajectory to file for visualization
save_arrays('output/trajectory/', {'X': all_X, 'U': all_U, 'sigma': all_sigma})
# plot trajectory
plot(all_X, all_U, all_sigma)