-
Notifications
You must be signed in to change notification settings - Fork 4
/
11.tex
940 lines (827 loc) · 31.1 KB
/
11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
\section{Lecture: 12/12/2024}
\label{11}
\subsection{Tensor products}
The \emph{tensor product} of the vector spaces (over $K$) $U$ and $V$
is the quotient vector space $K[U\times V]/T$, where $K[U\times V]$
is the vector space with basis
\[
\{(u,v):u\in U,v\in V\}
\]
and $T$ is the subspace
generated by elements of the form
\[
(\lambda u+\mu u',v)-\lambda(u,v)-\mu(u',v),\quad
(u,\lambda v+\mu v')-\lambda(u,v)-\mu(u,v')
\]
for $\lambda,\mu\in K$, $u,u'\in U$ and $v,v'\in V$.
The tensor product of $U$ and $V$ will be denoted by $U\otimes_KV$ or
$U\otimes V$ when the base field is clear from the context. For $u\in U$ and
$v\in V$ we write $u\otimes v$ to denote the coset $(u,v)+T$.
\begin{theorem}
Let $U$ and $V$ be vector spaces. Then there exists a bilinear map
\[
U\times V\to U\otimes V,\quad (u,v)\mapsto u\otimes v,
\]
such that
each element of $U\otimes V$ is a finite sum of the form
\[
\sum_{i=1}^N u_i\otimes v_i
\]
for some $u_1,\dots,u_N\in U$ and $v_1,\dots,v_N\in V$.
Moreover, if $W$ is a vector space and
\[
\beta\colon U\times V\to W
\]
is a bilinear map,
there exists a linear map
$\overline{\beta}\colon U\otimes V\to W$ such that $\overline{\beta}(u\otimes
v)=\beta(u,v)$ for all $u\in U$ and $v\in V$.
\end{theorem}
\begin{proof}
By definition, the map
\[
U\times V\to U\otimes V,\quad
(u,v)\mapsto u\otimes v,
\]
is bilinear. From the definitions, it follows that
$U\otimes V$ is a finite linear combination of elements of the form
$u\otimes v$, where $u\in U$ and $v\in V$. Since $\lambda(u\otimes
v)=(\lambda u)\otimes v$ for all $\lambda\in K$, the first claim follows.
Since the elements of $U\times V$ form a basis of $K[U\times V]$, there exists
a linear map
\[
\gamma\colon K[U\times V]\to W,\quad
\gamma(u,v)=\beta(u,v).
\]
Since $\beta$ is bilinear by assumption, $T\subseteq\ker\gamma$. It follows that there exists
a linear map $\overline{\beta}\colon U\otimes V\to
W$ such that
\[
\begin{tikzcd}
K[U\times V] \arrow[r]\arrow[d] & W \\
U\otimes V\arrow[ur, dashrightarrow]
\end{tikzcd}
\]
commutes. In particular, $\overline{\beta}(u\otimes v)=\beta(u,v)$.
\end{proof}
\begin{exercise}
\label{xca:tensorial_unicidad}
Prove that the properties of the previous theorem characterize tensor products up to isomorphism.
\end{exercise}
Some properties:
%Observemos
%que todo elemento de $U\otimes V$ es una suma finita
%de la forma
%\[
% \sum_{i=1}^N u_i\otimes v_i
%\]
%para $N\in\N$, $u_i\in U$ y $v_i\in V$. Esta expresión no es única. Vale además
%que $u\otimes 0=0=0\otimes v$ para todo $u\in U$ y $v\in V$.
\begin{proposition}
Let $\varphi\colon U\to U_1$ and $\psi\colon V\to V_1$ be linear maps. There
exists a unique linear map
$\varphi\otimes\psi\colon U\otimes V\to U_1\otimes V_1$ such that
\[
(\varphi\otimes\psi)(u\otimes v)=\varphi(u)\otimes\psi(v)
\]
for all $u\in U$ and $v\in V$.
\end{proposition}
\begin{proof}
Since $U\times V\to U_1\otimes V_1$,
$(u,v)\mapsto\varphi(u)\otimes\psi(v)$, is bilinear, there exists a linear map
$U\otimes V\to U_1\otimes V_1$, $u\otimes
v\to\varphi(u)\otimes\psi(v)$. Thus
\[
\sum u_i\otimes v_i\mapsto\sum\varphi(u_i)\otimes\psi(v_i)
\]
is well-defined.
\end{proof}
\begin{exercise}
Prove the following statements:
\begin{enumerate}
\item $(\varphi\otimes\psi)(\varphi'\otimes\psi')=(\varphi\varphi')\otimes(\psi\psi')$.
\item If $\varphi$ and $\psi$ are isomorphisms, then
$\varphi\otimes\psi$ is an isomorphism.
\item $(\lambda\varphi+\lambda'\varphi')\otimes\psi=\lambda\varphi\otimes\psi+\lambda'\varphi'\otimes\psi$.
\item $\varphi\otimes(\lambda\psi+\lambda'\psi')=\lambda\varphi\otimes\psi+\lambda'\varphi\otimes\psi'$.
\item If $U\simeq U_1$ and $V\simeq V_1$, then $U\otimes V\simeq U_1\otimes V_1$.
\end{enumerate}
\end{exercise}
The following proposition is extremely useful:
\begin{proposition}
If $U$ and $V$ are vector spaces, then
$U\otimes V\simeq V\otimes U$.
\end{proposition}
\begin{proof}
Since $U\times V\to V\otimes U$, $(u,v)\mapsto v\otimes u$, is bilinear, there exists
a linear map
\[
U\otimes V\to V\otimes U,\quad u\otimes
v\mapsto v\otimes u.
\]
Similarly, there exists a linear map
\[
V\otimes U\to U\otimes V,\quad v\otimes u\mapsto
u\otimes v.
\]
Thus $U\otimes V\simeq V\otimes U$.
\end{proof}
\begin{exercise}
\label{xca:UxVxW}
Prove that $(U\otimes V)\otimes W\simeq U\otimes(V\otimes W)$.
\end{exercise}
\begin{exercise}
\label{xca:UxK}
Prove that $U\otimes K\simeq U\simeq K\otimes U$.
\end{exercise}
\begin{proposition}
\label{pro:U_LI}
Let $U$ and $V$ be vector spaces.
If $\{u_1,\dots,u_n\}$ is a linearly independent subset of $U$ and
$v_1,\dots,v_n\in V$ is such that $\sum_{i=1}^n u_i\otimes v_i=0$, then
$v_i=0$ for all $i\in\{1,\dots,n\}$.
\end{proposition}
\begin{proof}
Let $i\in\{1,\dots,n\}$ and
\[
f_i\colon U\to K,
\quad
f_i(u_j)=\delta_{ij}=\begin{cases}
1 & \text{if $i=j$},\\
0 & \text{otherwise}.
\end{cases}
\]
Since the map
\[
U\times V\to V,\quad (u,v)\mapsto f_i(u)v,
\]
is bilinear, there exists
a linear map
$\alpha_i\colon U\otimes V\to V$ such that $\alpha_i(u\otimes
v)=f_i(u)v$. Thus
\[
v_i=\sum_{j=1}^n\alpha_i(u_j\otimes v_j)=\alpha_i\left(\sum_{j=1}^nu_j\otimes v_j\right)=0.\qedhere
\]
\end{proof}
\begin{exercise}
\label{xca:uxv=0}
Prove that $u\otimes v=0$ and $v\ne 0$ imply $u=0$.
\end{exercise}
\begin{theorem}
Let $U$ and $V$ be vector spaces.
If $\{u_i:i\in I\}$ is a basis of $U$ and $\{v_j:j\in J\}$ is a basis of $V$, then
$\{u_i\otimes v_j:i\in I,j\in J\}$ is a basis of $U\otimes
V$.
\end{theorem}
\begin{proof}
The $u_i\otimes v_j$ are generators of $U\otimes V$, as
$u=\sum_i\lambda_iu_i$ and $v=\sum_j\mu_jv_j$ imply
\[
u\otimes v=\sum_{i,j}\lambda_i\mu_ju_i\otimes v_j.
\]
We now prove that the $u_i\otimes v_j$ are linearly independent. We need to show that
each finite subset of the $u_i\otimes v_j$
is linearly independent. If $\sum_k\sum_l\lambda_{kl}u_{i_k}\otimes
v_{j_l}=0$, then
\[
0=\sum_{k}u_{i_k}\otimes\left(\sum_{l}\lambda_{kl}v_{j_l}\right).\]
Since
the $u_{i_k}$ are linearly independent, Proposition~\ref{pro:U_LI}
implies that $\sum_{l}\lambda_{kl}v_{j_l}=0$. Thus $\lambda_{kl}=0$ for all
$k,l$, as the $v_{j_l}$ are linearly independent.
\end{proof}
If $U$ and $V$ are finite-dimensional vector spaces, then
\[
\dim(U\otimes V)=(\dim U)(\dim V).
\]
\begin{corollary}
If $\{u_i:i\in I\}$ is a basis of $U$, then every element of $U\otimes V$
can be written uniquely as a finite sum $\sum_{i}u_i\otimes v_i$.
\end{corollary}
\begin{proof}
Every element of the tensor product $U\otimes V$ is a finite sum
of the form $\sum_i x_i\otimes y_i$, where $x_i\in U$ and $y_i\in V$. If
$x_i=\sum_j\lambda_{ij}u_j$, then
\[
\sum_i x_i\otimes y_i=\sum_i\left(\sum_j\lambda_{ij}u_j\right)\otimes y_i
=\sum_j u_j\otimes\left(\sum_i\lambda_{ij}y_i\right).\qedhere
\]
\end{proof}
%\begin{corollary}
% Todo elemento no nulo de $U\otimes V$ puede escribirse como una suma finita
% $\sum_{i=1}^N u_i\otimes v_i$ para un conjuntos $\{u_i:1\leq i\leq
% N\}\subseteq U$ y $\{v_i:1\leq i\leq N\}\subseteq V$ linealmente
% independientes.
%\end{corollary}
%
%\begin{proof}
% tomar $N$ minimal
%\end{proof}
\begin{exercise}
\label{xca:tensor_algebras}
Let $A$ and $B$ be algebras. Prove that $A\otimes B$
is an algebra with
\[
(a\otimes b)(x\otimes y)=ax\otimes by.
\]
\end{exercise}
% \begin{proof}
% Para $x\in A$, $y\in B$ consideramos $R_x\otimes R_y\in\End_K(A\otimes B)$.
% Como la función $A\times B\to\End_K(A\otimes B)$, $(x,y)\mapsto R_x\otimes
% R_y$, es bilineal, existe una función lineal $\varphi\colon A\otimes
% B\to\End_K(A\otimes B)$, $\varphi(x\otimes y)=R_x\otimes R_y$. Para $u,v\in A\otimes B$ definimos
% \[
% uv=\varphi(v)(u).
% \]
% Esta operación es bilineal pues por ejemplo
% \[
% u(v+w)=\varphi(v+w)(u)=(\varphi(v)+\varphi(w))(u)=\varphi(v)(u)+\varphi(w)(u)=uv+uw.
% \]
% Además
% $(a\otimes b)(x\otimes y)=\varphi(x\otimes y)(a\otimes b)=(R_x\otimes R_y)(a\otimes b)=ax\otimes by$.
% Un cálculo sencillo muestra que este producto es asociativo.
% \end{proof}
\begin{exercise}
Let $K$ be a field and $A,B,C$ be $K$-algebras.
Prove the following statements:
\begin{enumerate}
\item $A\otimes B\simeq B\otimes A$.
\item $(A\otimes B)\otimes C\simeq A\otimes(B\otimes C)$.
\item $A\otimes K\simeq A\simeq K\otimes A$.
\item If $A\simeq A_1$ and $B\simeq B_1$, then $A\otimes B\simeq A_1\otimes B_1$.
\end{enumerate}
\end{exercise}
Some examples:
\begin{proposition}
If $G$ and $H$ are groups, then $K[G]\otimes K[H]\simeq K[G\times H]$.
\end{proposition}
\begin{proof}
The set $\{g\otimes h:g\in G,h\in H\}$ is a basis of $K[G]\otimes K[H]$ and
the elements of $G\times H$ form a basis of $K[G\times H]$. There exists a linear isomorphism
\[
K[G]\otimes K[H]\to K[G\times H],
\quad
g\otimes h\mapsto (g,h),
\]
that is multiplicative. Thus $K[G]\otimes K[H]\simeq K[G\times H]$
as algebras.
\end{proof}
\begin{proposition}
\label{pro:AKX=AX}
If $A$ is an algebra, then $A\otimes K[X]\simeq A[X]$.
\end{proposition}
\begin{proof}
Each element of the tensor product $A\otimes K[X]$ can be written uniquely as a finite sum of
the form $\sum a_i\otimes X^i$. Routine calculations show that
$A\otimes K[X]\mapsto A[X]$, $\sum a_i\otimes X^i\mapsto \sum a_iX^i$, is a
linear algebra isomorphism.
\end{proof}
\begin{exercise}
\label{xca:AM=MA}
Prove that if $A$ is an algebra, then $A\otimes M_n(K)\simeq M_n(A)$. In
particular, $M_n(K)\otimes M_m(K)\simeq M_{nm}(K)$.
\end{exercise}
Proposition \ref{pro:AKX=AX} and Exercise \ref{xca:AM=MA}
are examples of a procedure known as \emph{scalar extensions}.
\begin{theorem}
\label{thm:extensions_scalars}
Let $A$ be an algebra over $K$ and $E$ be an extension of $K$ (this just simply means that
$K$ is a subfield of $E$). Then
$A^E=E\otimes_KA$ is an algebra over $E$ with respect to
the scalar multiplication
\[
\lambda(\mu\otimes a)=(\lambda\mu)\otimes a,
\]
for all $\lambda,\mu\in E$ and $a\in A$.
\end{theorem}
\begin{proof}
Let $\lambda\in E$. Since $E\times A\to E\otimes_KA$,
$(\mu,a)\mapsto (\lambda\mu)\otimes a$, is $K$-bilinear, there exists
a linear map $E\otimes_KA\to E\otimes_KA$, $\mu\otimes a\mapsto
(\lambda\mu)\otimes a$. The scalar multiplication is then well-defined and
\[
\lambda(u+v)=\lambda u+\lambda v
\]
for all $\lambda\in E$ and $u,v\in E\otimes_KA$. Moreover,
\[
(\lambda+\mu)u=\lambda u+\mu u,
\quad
(\lambda\mu)u=\lambda(\mu u),
\quad
\lambda(uv)=(\lambda u)v=u(\lambda v)
\]
for all $u,v\in E\otimes_KA$ and $\lambda,\mu\in E$.
\end{proof}
\begin{exercise}
Prove the following statements:
\begin{enumerate}
\item $\{1\}\otimes A$ is a subalgebra of $A^E$ isomorphic to $A$.
\item If $\{a_i:i\in I\}$ is a basis of $A$, then $\{1\otimes a_i:i\in
I\}$ is a basis of $A^E$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Prove that if $G$ is a group and $K$ is a subfield of $E$, then
\[
E\otimes_K K[G]\simeq E[G].
\]
\end{exercise}
\subsection{Formanek's theorem, II}
The combination of technique known as extensions of scalars we have seen in the previous section
and Formanek's theorem for rational group algebras
yield the following general result.
\begin{theorem}[Formanek]
\index{Formanek's theorem}
Let $K$ be a field of characteristic zero and let $G$ be a group.
If every element of $K[G]$ is invertible or a zero divisor,
then $G$ is locally finite.
\end{theorem}
\begin{proof}
Since $K$ is of characteristic zero, $\Q\subseteq K$. Then $K[G]\simeq
K\otimes_{\Q}\Q[G]$. Each $\beta\in K\otimes_{\Q}\Q[Q]$ can be written
uniquely as
\[
\beta=1\otimes\beta_0+\sum k_i\otimes\beta_i,
\]
where $\{1,k_1,k_2,\dots,\}$ is a basis of $K$ as a $\Q$-vector space.
Let $\alpha\in\Q[G]$ and let $\beta\in K[G]$ be such that $\alpha\beta=1$. Since
\[
1\otimes 1=(1\otimes\alpha)\beta=1\otimes \alpha\beta_0+\sum k_i\otimes \alpha\beta_i,
\]
it follows that $\alpha\beta_0=1$. Similarly, if
$\alpha\beta=0$, then $\alpha\beta_j=0$ for all $j$. Since
each $\alpha\in\Q[G]$ is invertible or a zero divisor, Formanek's theorems
for $\Q$ applies.
\end{proof}
% \section*{Rickart's theorem}
% En esta sección vamos a demostrar que para cualquier grupo $G$ el radical de
% Jacobson de $\C[G]$ es cero. Demostraremos también que el radical de Jacobson
% de $\R[G]$ es cero.
% \begin{definition}
% \index{Anillo!con involución}
% \index{Involución!de un anillo}
% Sea $R$ un anillo. Una \emph{involución} del anillo $R$ es un morfismo
% aditivo $R\to R$, $x\mapsto x^*$, tal que $x^{**}=x$ y $(xy)^*=y^*x^*$ para
% todo $x,y\in R$.
% \end{definition}
% De la definición se deduce inmediatamente que si $R$ es unitario, entonces
% $1^*=1$.
% \begin{example}
% La conjugación $z\mapsto\overline{z}$ es una involución de $\C$.
% \end{example}
% \begin{example}
% La trasposición $X\mapsto X^T$ es una involución del
% anillo $M_n(K)$.
% \end{example}
% \begin{example}
% Sea $G$ un grupo. Entonces
% $\left(\sum_{g\in G}\alpha_gg\right)^*=\sum_{g\in G}\overline{\alpha_g}g^{-1}$
% es una involución de $\C[G]$.
% \end{example}
% Dado un grupo $G$, se define la \emph{traza} de un elemento
% $\alpha=\sum_{g\in G}\alpha_gg\in K[G]$ como $\trace(\alpha)=\alpha_1$. Es
% fácil ver que $\trace\colon K[G]\to K$, $\alpha\mapsto\trace(\alpha)$ es una
% función $K$-lineal tal que $\trace(\alpha\beta)=\trace(\beta\alpha)$.
% \begin{exercise}
% Sea $G$ un grupo finito y $K$ un cuerpo tal que su característica no divide al orden de $G$.
% Demuestre las siguientes afirmaciones:
% \begin{enumerate}
% \item Si $\alpha\in K[G]$ es nilpotente, entonces $\trace(\alpha)=0$.
% \item Si $\alpha\in K[G]$ es idempotente, entonces $\trace(\alpha)=\dim
% K[G]\alpha/|G|$.
% \end{enumerate}
% \end{exercise}
% \begin{exercise}
% Demuestre que
% $\langle\alpha,\beta\rangle=\trace(\alpha\beta^*)$, $\alpha,\beta\in\C[G]$,
% define un producto interno en $\C[G]$.
% \end{exercise}
% \begin{lemma}
% \label{lem:algebraico}
% Sea $G$ un grupo. Si $J(\C[G])\ne 0$, entonces existe $\alpha\in J(\C[G])$ tal que
% $\trace(\alpha^{2^m})\in\R_{\geq1}$
% para todo $m\geq1$.
% \end{lemma}
% \begin{proof}
% Sea $\alpha=\sum_{g\in G}\alpha_gg\in\C[G]$. Entonces
% \[
% \trace(\alpha^*\alpha)
% =\sum_{g\in G}\overline{\alpha_g}\alpha_g
% =\sum_{g\in G}|\alpha_g|^2\geq|\alpha_1|^2
% =|\trace(\alpha)|^2.
% \]
% Al usar esta fórmula para algún $\alpha$ tal que $\alpha^*=\alpha$ y usar
% inducción se obtiene que $\trace(\alpha^{2^m})\geq|\trace(\alpha)|^{2^m}$
% para todo $m\geq1$.
% Sea $\beta=\sum_{g\in G}\beta_gg\in J(\C[G])$ tal que $\beta\ne0$. Como
% $\trace(\beta^*\beta)=\sum_{g\in G}|\beta_g|^2\ne0$ y $J(\C[G])$ es un ideal,
% \[
% \alpha=\frac{\beta^*\beta}{\trace(\beta^*\beta)}\in J(\C[G]).
% \]
% Este elemento $\alpha$ cumple que $\alpha^*=\alpha$ y $\trace(\alpha)=1$.
% Luego $\trace(\alpha^{2^m})\geq 1$ para todo $m\geq1$.
% \end{proof}
% El ejercicio~\ref{exa:norma} implica que $\C[G]$ con
% $\dist(\alpha,\beta)=|\alpha-\beta|$ es un espacio métrico. En este espacio
% métrico, la función $\C[G]\to\C$, $\alpha\mapsto \trace(\alpha)$, es una
% función continua.
% \begin{lemma}
% \label{lem:phi_diferenciable}
% Sea $\alpha\in J(\C[G])$. La función
% \[
% \varphi\colon\C\to\C[G],\quad
% \varphi(z)=(1-z\alpha)^{-1},
% \]
% es continua, diferenciable y $\varphi(z)=\sum_{n\geq0}\alpha^nz^n\in\C[G]$ si $|z|$
% es suficientemente pequeño.
% \end{lemma}
% \begin{proof}
% Sean $y,z\in\C$. Como $\varphi(y)$ y $\varphi(z)$ conmutan,
% \begin{equation}
% \label{eq:Rickart}
% \begin{aligned}
% \varphi(y)-\varphi(z)&=\left( (1-z\alpha)-(1-y\alpha)\right)(1-y\alpha)^{-1}(1-z\alpha)^{-1}\\
% &=(y-z)\alpha\varphi(y)\varphi(z).
% \end{aligned}
% \end{equation}
% Entonces $|\varphi(y)|\leq|\varphi(z)|+|y-z||\alpha\varphi(y)||\varphi(z)|$ y luego
% \[
% |\varphi(y)|\left( 1-|y-z||\alpha\varphi(z)|\right)\leq|\varphi(z)|.
% \]
% Fijado $z$ podemos elegir $y$ suficientemente cerca de $z$ de forma tal que
% se cumpla que $1-|y-z||\alpha\varphi(z)|\geq1/2$. Luego
% $|\varphi(y)|\leq2|\varphi(z)|$. De la igualdad~\eqref{eq:Rickart} se
% obtiene entonces $|\varphi(y)-\varphi(z)|\leq2|y-z||\alpha||\varphi(z)|^2$
% y luego $\varphi$ es una función continua. Por la
% expresión~\eqref{eq:Rickart},
% \[
% \varphi'(z)
% =\lim_{y\to z}\frac{\varphi(y)-\varphi(z)}{y-z}
% =\lim_{y\to z}\alpha\varphi(y)\varphi(z)
% =\alpha\varphi(z)^2
% \]
% para todo $z\in\C$.
% Si $z$ es tal que $|z||\alpha|=|z\alpha|<1$, entonces
% \[
% \varphi(z)-\sum_{n=0}^Nz^n\alpha^n
% =\varphi(z)\left(1-(1-z\alpha)\sum_{n=0}^Nz^n\alpha^n\right)
% =\varphi(z)(z\alpha)^{N+1}
% \]
% y luego
% \[
% \left|\varphi(z)-\sum_{n=0}^Nz^n\alpha^n\right|\leq|\varphi(z)||z\alpha|^{N+1}.
% \]
% Como $\varphi(z)$ está acotada cerca de $z=0$, se concluye que
% $\left|\varphi(z)-\sum_{n=0}^Nz^n\alpha^n\right|\to0$ si $N\to\infty$.
% \end{proof}
% Estamos en condiciones de demostrar el teorema de Rickart:
% \begin{theorem}[Rickart]
% \index{Teorema!de Rickart}
% Si $G$ es un grupo, entonces $J(\C[G])=0$.
% \end{theorem}
% \begin{proof}
% Sea $\alpha\in J(\C[G])$ y sea $\varphi(z)=(1-\alpha z)^{-1}$. Sea
% $f\colon\C\to \C$ dada por
% $f(z)=\trace\varphi(z)=\trace\left((1-z\alpha)^{-1}\right)$. Por el lema~\ref{lem:phi_diferenciable},
% $f(z)$ es una función entera tal que $f'(z)=\trace(\alpha\varphi(z)^2)$ y
% \begin{equation}
% \label{eq:Taylor}
% f(z)=\sum_{n=0}^\infty z^n\trace(\alpha^n)
% \end{equation}
% si $|z|$ es suficientemente pequeño. En particular, la
% igualdad~\eqref{eq:Taylor} es la expansión en serie de Taylor para $f(z)$
% en el origen. Esto implica que esta serie tiene radio de convergencia
% infinito y converge a $f(z)$ para todo $z\in\C$. En particular,
% \begin{equation}
% \label{eq:limite}
% \lim_{n\to\infty}\trace(\alpha^n)=0.
% \end{equation}
% Por otro lado, si $\alpha\ne0$ el lema~\ref{lem:algebraico} implica que
% $\trace(\alpha^{2^m})\geq1$ para todo $m\geq0$, lo que contradice el límite
% calculado en~\eqref{eq:limite}. Luego $\alpha=0$.
% \end{proof}
% Para demostrar un corolario necesitamos dos lemas:
% \begin{lemma}[Nakayama]
% \label{lem:Nakayama}
% \index{Lema!de Nakayama}
% Sea $R$ un anillo unitario y sea $M$ un $R$-módulo finitamente generado. Si
% $J(R)M=M$, entonces $M=0$.
% \end{lemma}
% \begin{proof}
% Supongamos que $M$ está generado por los elementos $x_1,\dots,x_n$. Como $x_n\in M=J(R)M$,
% existen $r_1,\dots,r_n\in J(R)$ tales que $x_n=r_1x_1+\cdots+r_nx_n$, es decir
% $(1-r_n)x_n=\sum_{j=1}^{n-1}r_jx_j$.
% Como $1-r_n$ es inversible, existe $s\in R$ tal que $s(1-r_n)=1$. Luego
% $x_n=\sum_{j=1}^{n-1}sr_jx_j$
% y entonces $M$ está generado por $x_1,\dots,x_{n-1}$. Al repetir este
% procedimiento una cierta cantidad finita de veces, se obtiene que $M=0$.
% \end{proof}
% \begin{lemma}
% \label{lem:Rickart}
% Sea $\iota\colon R\to S$ un morfismo de anillos unitarios. Si
% \[
% S=\iota(R)x_1+\cdots+\iota(R)x_n,
% \]
% donde cada $x_j$ cumple que $x_jy=yx_j$ para todo $y\in\iota(R)$, entonces
% $\iota(J(R))\subseteq J(S)$.
% \end{lemma}
% \begin{proof}
% Veamos que $J=\iota(J(R))$ actúa trivialmente en cada $S$-módulo simple $M$.
% Si $M$ es un $S$-módulo simple, escribimos $M=Sm$ para algún $m\ne0$. Es
% claro que $M$ es un $R$-módulo con $r\cdot m=\iota(r)m$. Como
% \[
% M=Sm=(\iota(R)x_1+\cdots+\iota(R)x_n)m=\iota(R)(x_1m)+\cdots+\iota(R)(x_nm),
% \]
% $M$ es finitamente generado como $\iota(R)$-módulo. Además $J(R)\cdot
% M=JM=\iota(J)M$ es un $S$-submódulo de $M$ pues
% \[
% x_j(JM)=(x_jJ)M=(Jx_j)M=J(x_jM)\subseteq JM.
% \]
% Como $M\ne0$, el lema de Nakayama implica que $J(R)\cdot M\subsetneq M$. Luego,
% como $M$ es un $S$-módulo simple, se concluye que $J(R)M=0$.
% \end{proof}
% \begin{corollary}
% Si $G$ es un grupo, entonces $J(\R[G])=0$.
% \end{corollary}
% \begin{proof}
% Sea $\iota\colon \R[G]\to\C[G]$ la inclusión canónica. Como
% \[
% \C[G]=\R[G]+i\R[G],
% \]
% el lema~\ref{lem:Rickart} y el teorema de Rickart implican que
% $\iota(J(\R[G]))\subseteq J(\C[G])=0$. Luego $J(\R[G])=0$ pues $\iota$ es
% inyectiva.
% \end{proof}
\subsection{Wedderburn's little theorem}
\begin{definition}
The $n$-th cyclotomic polynomial
is defined as the polynomial
\begin{equation}
\label{eq:ciclotomico}
\Phi_n(X)=\prod(X-\zeta),
\end{equation}
where the product is taken over all
$n$-th primitive roots of one.
\end{definition}
Some examples:
\begin{align*}
&\Phi_2=X-1,\\
&\Phi_3=X^2+X+1,\\
&\Phi_4=X^2+1,\\
&\Phi_5=X^4+X^3+X^2+X+1,\\
&\Phi_6=X^2-X+1,\\
&\Phi_7=X^6+X^5+\cdots+X+1.
\end{align*}
\begin{lemma}
If $n\in\Z_{>0}$, then
\[
X^n-1=\prod_{d\mid n}\Phi_d(X).
\]
\end{lemma}
\begin{proof}
Write
\[
X^n-1=\prod_{j=1}^n (X-e^{2\pi ij/n})
=\prod_{d\mid n}\prod_{\substack{1\leq j\leq n\\\gcd(j,n)=d}}(X-e^{2\pi ij/n})
=\prod_{d\mid n}\Phi_d(X).\qedhere
\]
\end{proof}
\begin{lemma}
If $n\in\Z_{>0}$, then $\Phi_n(X)\in\Z[X]$.
\end{lemma}
\begin{proof}
We proceed by induction on $n$. The case $n=1$ is trivial, as
$\Phi_1(X)=X-1$. Assume that $\Phi_d(X)\in\Z[X]$ for all $d<n$.
Then
\[
\prod_{d\mid n,d\ne n}\Phi_d(X)\in\Z[X]
\]
is a monic polynomial. Thus $\Phi_n(X)/\prod_{d\mid
n,d<n}\Phi_d(X)\in\Z[X]$.
\end{proof}
\begin{theorem}[Wedderburn]
\label{thm:Wedderburn}
\index{Wedderburn's little theorem}
Every finite division ring is a field.
\end{theorem}
\begin{proof}
Let $D$ be a finite division ring
and $K=Z(D)$. Then $K$ is a finite field, say $|K|=q$.
We claim that $|q-\zeta|>q-1$ for all $n$-th
root of one $\zeta\ne 1$. In fact, write $\zeta=\cos\theta+i\sin\theta$. Then
$\cos\theta<1$ and
\[
|q-\zeta|^2=q^2-(2\cos\theta)q+1>(q-1)^2.
\]
Note that
$D$ is a $K$-vector space. Let
$n=\dim_KD$. We claim that $n=1$. If $n>1$, the
class equation for the group
$D^\times=D\setminus\{0\}$
% is
% \[
% |D^\times|=|Z(D)\setminus\{0\}|+\sum_{j=1}^m (G:C_D(x_j)),
% \]
% where $x_1,\dots,x_m\in D$ and $(D^{\times}:C_{D^\times}(x_j))>1$ for all $j$.
% ver Nicholson page 370
implies that
\begin{equation}
\label{eq:clases}
q^n-1=q-1+\sum_{j=1}^m \frac{q^n-1}{q^{d_j}-1},
\end{equation}
where $1<\frac{q^n-1}{q^{d_j}-1}\in\Z$ for all $j\in\{1,\dots,m\}$.
Since $d^{d_j}-1$ divides $q^n-1$, each $d_j$ divides $n$. In particular,
~\eqref{eq:ciclotomico} implies that
\begin{equation}
\label{eq:trick_ciclotomico}
X^n-1=\Phi_n(X)(X^{d_j}-1)h(X)
\end{equation}
for some $h(X)\in\Z[X]$.
By evaluating~\eqref{eq:trick_ciclotomico} in $X=q$
we obtain that $\Phi_n(q)$ divides $q^n-1$ and that $\Phi_n(q)$
divides $\frac{q^n-1}{q^{d_j}-1}$. By~\eqref{eq:clases},
$\Phi_n(q)$ divides $q-1$.
Thus
\[
q-1\geq |\Phi_n(q)|=\prod |q-\zeta|>q-1,
\]
as each $|q-\zeta|>q-1$,
a contradiction.
\end{proof}
There are several proofs of Wedderburn's theorem.
For example, \cite{MR360687} contains a proof that uses only
elementary linear algebra. In \cite[Chapter 14]{MR896269}
the theorem is proved using group theory.
\begin{theorem}
\label{thm:division}
Let $D$ be a division ring of characteristic $p>0$.
If $G$ is a subgroup of $D\setminus\{0\}$, then
$G$ is cyclic.
\end{theorem}
We shall need a lemma. The lemma
uses a well-known result from elementary number theory:
If $\varphi$ is the Euler function that
counts the positive integers up to a given integer $n$
that are relatively prime to $n$, then
\[
\sum_{d\mid n}\varphi(d)=n.
\]
Let us present a quick group-theoretical proof.
Let $G=\langle g\rangle$ be the cyclic group of order $n$.
Then
\[
n=|G|=\sum_{1\leq d\leq n}|\{g\in G:|g|=d\}|
=\sum_{d\mid n}|\{g\in G:|g|=d\}|
\]
by Lagrange's Theorem. Since $G$ is cyclic,
for each $d\mid n$,
$\langle g^{n/d}\rangle$ is the
unique subgroup of $G$ of order $d$. Now the claim follows,
as each subgroup
of the form $\langle g^{n/d}\rangle$ has $\varphi(d)$
generators.
\begin{lemma}
Let $K$ be a field.
Any finite subgroup of $K\setminus\{0\}$ is cyclic.
\end{lemma}
\begin{proof}
Let $G$ be a finite subgroup of $K\setminus\{0\}$ and
$n=|G|$. For a divisor $d$ of $n$, let
$f(d)$ be the number of elements of $G$ of order $d$.
Then
\begin{equation}
\label{eq:sum_f}
\sum_{d\mid n}f(d)=n.
\end{equation}
We claim that if $d\mid n$ is such that
$f(d)\ne0$, then $f(d)=\varphi(d)$, where $\varphi$ is
the Euler function. In fact, if $f(d)\ne 0$,
then there exists $g\in G$ such that $|g|=d$. Let
$H=\langle g\rangle$ be the subgroup of $G$ generated by $g$.
Every element of $H$ is a root of the polynomial
$p(X)=X^d-1\in K[X]$. Since $p(X)$ has at most $d$ roots,
$H$ is the set of roots of $p(X)$. In particular,
$g^m\in H$ and $|g^m|=d$ if and only if $\gcd(m,d)=1$. Hence
$f(d)=\varphi(d)$.
Since $\sum_{d\mid n}\varphi(d)$ and \eqref{eq:sum_f},
it follows that $f(n)=\varphi(n)\ne0$.
Hence there exists $g\in G$ such that
$|g|=n=|G|$ and $G$ is cyclic.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:division}]
Let $F=\sum_{g\in G}(\Z/p)g$. Then $F$ is a finite
subring of $D$. Since $D$ is a domain, $F$ is a domain.
Let $\alpha\in F\setminus\{0\}$.
Then
$\{\lambda\alpha:\lambda\in F\}=F$. Since $\lambda\alpha=1$
for some $\lambda\in F$, $F$ is a division ring. By Wedderburn's
theorem, $F$ is a field. Note that $G\subseteq F$.
Therefore $G$ is cyclic by the previous lemma.
\end{proof}
% todo: (draw a picture of $q$ and $\zeta$ in the complex plane)
% explicar mejor!
% Veamos como corolario una aplicación al último teorema de Fermat en anillos
% finitos. Demostraremos el siguiente resultado:
% \begin{theorem}
% Sea $R$ un anillo unitario finito. Entonces para todo $n\geq1$ existen $x,y,z\in
% R\setminus\{0\}$ tales que $x^n+y^n=z^n$ si y sólo si $R$ no es un anillo
% de división.
% \end{theorem}
% \begin{proof}
% Supongamos primero que $R$ es de división. Por el teorema de Wedderburn,
% $R$ es entonces un cuerpo finito, digamos $|R|=q$. Como entonces
% $x^{q-1}=1$ para todo $x\in R\setminus\{0\}$, se concluye que la ecuación
% $x^{q-1}+y^{q-1}=z^{q-1}$ no tiene solución.
% Supongamos ahora que $R$ no es de división. Como entonces, en particular,
% $R$ no es un cuerpo, $|R|>2$ y luego $x+y=z$ tiene solución en
% $R\setminus\{0\}$ (tomar por ejemplo $x=1$, $y=z-1$ y $z\not\in\{0,1\}$).
% Como $R$ es finito, $R$ es artiniano a izquierda y entonces el radical de
% Jacobson $J(R)$ es nilpotente. Si $J(R)\ne 0$, existe entonces $a\in
% R\setminus\{0\}$ tal que $a^2=0$ y luego $a^n=0$ para todo $n\geq2$. En
% este caso, la ecuación $x^n+y^n=z^n$ tiene solución en $R\setminus\{0\}$ si
% $n\geq 2$ (tomar por ejemplo $x=a$, $y=z=1$). Si $J(R)=0$, entonces, $R$ es
% semisimple y luego, por el teorema de Wedderburn,
% \[
% R\simeq \prod_{i=1}^k M_{n_i}(D_i)
% \]
% donde los $D_i$ son cuerpos finitos (por ser anillos de división finitos).
% Como $R$ no es un cuerpo, hay dos posibilidades: o bien $n_i>1$ para algún
% $i\in\{1,\dots,k\}$, o bien $k\geq 2$ y $n_i=1$ para todo
% $i\in\{1,\dots,k\}$. En el primer caso, como $M_{n_i}(D_i)$ tiene elementos
% no nulos cuyo cuadrado es cero, $R$ también los tiene, y luego, tal como se
% hizo antes, vemos que $x^n+y^n=z^n$ tiene solución. En el segundo caso,
% $x=(1,0,0,\dots,0)$, $y=(0,1,0,\dots,0)$ y $z=(1,1,0,\dots,0)$ es una
% solución de $x^n+y^n=z^n$.
% \end{proof}
\subsection{Zsigmondy's theorem}
One of Wedderburn's original proof of Theorem \ref{thm:Wedderburn}
uses a
result proved
by Zsigmondy \cite{MR1546236}. Zsigmondy's theorem is
quite popular in mathematical contests.
%Let $a>b\geq1$ be such that $\gcd(a,b)=1$. Let $n\geq2$.
%We say that
%a prime divisor $p$ is a primitive divisor
%of $a^n-b^n$ if $p\mid a^n-b^n$ and
%$p\nmid a^k-b^k$ for all $k\in\{1,\dots,n-1\}$.
\begin{theorem}[Zsigmondy]
\index{Zsigmondy's theorem}
Let $a>b\geq1$ be such that $\gcd(a,b)=1$ and $n\geq2$.
Then there exists a prime divisor of $a^n-b^n$ that does not
divide $a^k-b^k$ for all $k\in\{1,\dots,n-1\}$ except
when $n=2$ and $a+b$ is a power of two or $(a,b,n)=(2,1,6)$.
\end{theorem}
% https://angyansheng.github.io/blog/an-elementary-proof-of-zsigmondys-theorem
\begin{proof}
See for example \cite{MR3172590}.
\end{proof}
We now quickly sketch a proof of Wedderburn's theorem \ref{thm:Wedderburn}
based on Zsigmondy's theorem.
Let $D$ be a division ring of dimension $n$ over $\Z/p$ for a prime
number $p$. Assume
first that there exists a prime number $q$ such that
$q\nmid p$ and the order of $p$ modulo $q$ is $n$. Let $x\in D\setminus\{0\}$ be an element of order $q$ and $F$ be the subring
of $D$ generated by $g$. Note that $F$ is a finite-dimensional
$(\Z/p)$-vector space. Let $m=\dim F$.
Since $g^{p^m-1}=1$, $q$ divides $p^m-1$. Thus $m=n$ and
hence $D=F$ is commutative.
Assume now that there is no prime number $q$ such that
$q\nmid p$ and the order of $p$ modulo $q$ is $n$. By Zsigmondy's
theorem, $n=2$ or $n=6$ and $p=2$. If $n=2$, then
$D$ is commutative, as it is the subring generated by
any element of $D\setminus \Z/p$. If $n=6$ and $p=2$, then
the order of 2 modulo 9 is 6. Since $D\setminus\{0\}$ contains
a subgroup of order 9 and all groups of order 9 are abelian,
we can use the previous argument to complete the proof.
\subsection{Fermat's last theorem in finite rings}
\begin{theorem}
\index{Fermat's last theorem for finite rings}
Let $K$ be a finite field and $A$ be a finite-dimensional $K$-algebra.
For $n\geq1$, there exist $x,y,z\in A\setminus\{0\}$
such that $x^n+y^n=z^n$ if and only if
$A$ is not a division algebra.
\end{theorem}
\begin{proof}
Assume first that $A$ is a division algebra. By Wedderburn's theorem,
$A$ is a finite field, say $|A|=q$. Then $x^{q-1}=1$ for all $x\in A\setminus\{0\}$.
Hence $x^n+y^n=z^n$ does not have a solution.
Conversely, assume that $A$ is not a division algebra. In particular,
$A$ is not a field and $|A|>2$. The equation $x+y=z$ has a solution in $A\setminus\{0\}$ (for example, $x=1$, $y=z-1$ and $z\not\in\{0,1\}$ is a solution). Since
$\dim A<\infty$, the Jacobson radical $J(A)$ is nilpotent. There are two
cases to consider.
If $J(A)\ne\{0\}$,
then there exists $a\in A\setminus\{0\}$ such that $a^2=0$. Thus $a^n=0$
for all $n\geq2$. Hence $x^n+y^n=z^n$ has a non-trivial
solution in $A\setminus\{0\}$ for all $n\geq2$ (for example, take
$x=a$ and $y=z=1$).
If $J(A)=\{0\}$, then $A$ is semisimple and
$A\simeq\prod_{i=1}^k M_{n_i}(D_i)$ for (finite) division rings $D_1,\dots,D_k$
and integers $n_1,\dots,n_k$. By Wedderburn's theorem, each $D_i$ is a finite
field. We consider two possible cases.
If there exists $i\in\{1,\dots,k\}$ such that $n_i>1$, then
$M_{n_i}(D_i)$ has non-zero elements such that their squares are zero. Thus
there exists $x\in A\setminus\{0\}$ such that $x^2=0$. In particular,
$x^n+y^n=z^n$ has a solution.
If $k\geq 2$, then $x=(1,0,0,\dots,0)$, $y=(0,1,0,\dots,0)$
and $z=(1,1,0,\dots,0)$ is a solution of $x^n+y^n=z^n$.
\end{proof}