-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtrain.py
294 lines (250 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from models.frameworks import get_model
from models.base import get_optimizer, get_scheduler
from utils import rend_util, train_util, mesh_util, io_util
from utils.dist_util import get_local_rank, init_env, is_master, get_rank, get_world_size
from utils.print_fn import log
from utils.logger import Logger
from utils.checkpoints import CheckpointIO
from dataio import get_data
import os
import sys
import time
import functools
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
def main_function(args):
init_env(args)
#----------------------------
#-------- shortcuts ---------
rank = get_rank()
local_rank = get_local_rank()
world_size = get_world_size()
i_backup = int(args.training.i_backup // world_size) if args.training.i_backup > 0 else -1
i_val = int(args.training.i_val // world_size) if args.training.i_val > 0 else -1
i_val_mesh = int(args.training.i_val_mesh // world_size) if args.training.i_val_mesh > 0 else -1
special_i_val_mesh = [int(i // world_size) for i in [3000, 5000, 7000]]
exp_dir = args.training.exp_dir
mesh_dir = os.path.join(exp_dir, 'meshes')
device = torch.device('cuda', local_rank)
# logger
logger = Logger(
log_dir=exp_dir,
img_dir=os.path.join(exp_dir, 'imgs'),
monitoring=args.training.get('monitoring', 'tensorboard'),
monitoring_dir=os.path.join(exp_dir, 'events'),
rank=rank, is_master=is_master(), multi_process_logging=(world_size > 1))
log.info("=> Experiments dir: {}".format(exp_dir))
if is_master():
# backup codes
io_util.backup(os.path.join(exp_dir, 'backup'))
# save configs
io_util.save_config(args, os.path.join(exp_dir, 'config.yaml'))
dataset, val_dataset = get_data(args, return_val=True, val_downscale=args.data.get('val_downscale', 4.0))
bs = args.data.get('batch_size', None)
if args.ddp:
train_sampler = DistributedSampler(dataset)
dataloader = torch.utils.data.DataLoader(dataset, sampler=train_sampler, batch_size=bs)
val_sampler = DistributedSampler(val_dataset)
valloader = torch.utils.data.DataLoader(val_dataset, sampler=val_sampler, batch_size=bs)
else:
dataloader = DataLoader(dataset,
batch_size=bs,
shuffle=True,
pin_memory=args.data.get('pin_memory', False))
valloader = DataLoader(val_dataset,
batch_size=1,
shuffle=True)
# Create model
model, trainer, render_kwargs_train, render_kwargs_test, volume_render_fn = get_model(args)
model.to(device)
log.info(model)
log.info("=> Nerf params: " + str(train_util.count_trainable_parameters(model)))
render_kwargs_train['H'] = dataset.H
render_kwargs_train['W'] = dataset.W
render_kwargs_test['H'] = val_dataset.H
render_kwargs_test['W'] = val_dataset.W
# build optimizer
optimizer = get_optimizer(args, model)
# checkpoints
checkpoint_io = CheckpointIO(checkpoint_dir=os.path.join(exp_dir, 'ckpts'), allow_mkdir=is_master())
if world_size > 1:
dist.barrier()
# Register modules to checkpoint
checkpoint_io.register_modules(
model=model,
optimizer=optimizer,
)
# Load checkpoints
load_dict = checkpoint_io.load_file(
args.training.ckpt_file,
ignore_keys=args.training.ckpt_ignore_keys,
only_use_keys=args.training.ckpt_only_use_keys,
map_location=device)
logger.load_stats('stats.p') # this will be used for plotting
it = load_dict.get('global_step', 0)
epoch_idx = load_dict.get('epoch_idx', 0)
# pretrain if needed. must be after load state_dict, since needs 'is_pretrained' variable to be loaded.
#---------------------------------------------
#-------- init perparation only done in master
#---------------------------------------------
if is_master():
pretrain_config = {'logger': logger}
if 'lr_pretrain' in args.training:
pretrain_config['lr'] = args.training.lr_pretrain
if(model.implicit_surface.pretrain_hook(pretrain_config)):
checkpoint_io.save(filename='latest.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
# Parallel training
if args.ddp:
trainer = DDP(trainer, device_ids=args.device_ids, output_device=local_rank, find_unused_parameters=False)
# build scheduler
scheduler = get_scheduler(args, optimizer, last_epoch=it-1)
t0 = time.time()
log.info('=> Start training..., it={}, lr={}, in {}'.format(it, optimizer.param_groups[0]['lr'], exp_dir))
end = (it >= args.training.num_iters)
with tqdm(range(args.training.num_iters), disable=not is_master()) as pbar:
if is_master():
pbar.update(it)
while it <= args.training.num_iters and not end:
try:
if args.ddp:
train_sampler.set_epoch(epoch_idx)
for (indices, model_input, ground_truth) in dataloader:
int_it = int(it // world_size)
#-------------------
# validate
#-------------------
if i_val > 0 and int_it % i_val == 0:
with torch.no_grad():
(val_ind, val_in, val_gt) = next(iter(valloader))
intrinsics = val_in["intrinsics"].to(device)
c2w = val_in['c2w'].to(device)
# N_rays=-1 for rendering full image
rays_o, rays_d, select_inds = rend_util.get_rays(
c2w, intrinsics, render_kwargs_test['H'], render_kwargs_test['W'], N_rays=-1)
target_rgb = val_gt['rgb'].to(device)
rgb, depth_v, ret = volume_render_fn(rays_o, rays_d, calc_normal=True, detailed_output=True, **render_kwargs_test)
to_img = functools.partial(
rend_util.lin2img,
H=render_kwargs_test['H'], W=render_kwargs_test['W'],
batched=render_kwargs_test['batched'])
logger.add_imgs(to_img(target_rgb), 'val/gt_rgb', it)
logger.add_imgs(to_img(rgb), 'val/predicted_rgb', it)
logger.add_imgs(to_img((depth_v/(depth_v.max()+1e-10)).unsqueeze(-1)), 'val/pred_depth_volume', it)
logger.add_imgs(to_img(ret['mask_volume'].unsqueeze(-1)), 'val/pred_mask_volume', it)
if 'depth_surface' in ret:
logger.add_imgs(to_img((ret['depth_surface']/ret['depth_surface'].max()).unsqueeze(-1)), 'val/pred_depth_surface', it)
if 'mask_surface' in ret:
logger.add_imgs(to_img(ret['mask_surface'].unsqueeze(-1).float()), 'val/predicted_mask', it)
if hasattr(trainer, 'val'):
trainer.val(logger, ret, to_img, it, render_kwargs_test)
logger.add_imgs(to_img(ret['normals_volume']/2.+0.5), 'val/predicted_normals', it)
#-------------------
# validate mesh
#-------------------
if is_master():
# NOTE: not validating mesh before 3k, as some of the instances of DTU for NeuS training will have no large enough mesh at the beginning.
if i_val_mesh > 0 and (int_it % i_val_mesh == 0 or int_it in special_i_val_mesh) and it != 0:
with torch.no_grad():
io_util.cond_mkdir(mesh_dir)
mesh_util.extract_mesh(
model.implicit_surface,
filepath=os.path.join(mesh_dir, '{:08d}.ply'.format(it)),
volume_size=args.data.get('volume_size', 2.0),
show_progress=is_master())
if it >= args.training.num_iters:
end = True
break
#-------------------
# train
#-------------------
start_time = time.time()
ret = trainer.forward(args, indices, model_input, ground_truth, render_kwargs_train, it)
losses = ret['losses']
extras = ret['extras']
for k, v in losses.items():
# log.info("{}:{} - > {}".format(k, v.shape, v.mean().shape))
losses[k] = torch.mean(v)
optimizer.zero_grad()
losses['total'].backward()
# NOTE: check grad before optimizer.step()
if True:
grad_norms = train_util.calc_grad_norm(model=model)
optimizer.step()
scheduler.step(it) # NOTE: important! when world_size is not 1
#-------------------
# logging
#-------------------
# done every i_save seconds
if (args.training.i_save > 0) and (time.time() - t0 > args.training.i_save):
if is_master():
checkpoint_io.save(filename='latest.pt', global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
t0 = time.time()
if is_master():
#----------------------------------------------------------------------------
#------------------- things only done in master -----------------------------
#----------------------------------------------------------------------------
pbar.set_postfix(lr=optimizer.param_groups[0]['lr'], loss_total=losses['total'].item(), loss_img=losses['loss_img'].item())
if i_backup > 0 and int_it % i_backup == 0 and it > 0:
checkpoint_io.save(filename='{:08d}.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
#----------------------------------------------------------------------------
#------------------- things done in every child process ---------------------------
#----------------------------------------------------------------------------
#-------------------
# log grads and learning rate
for k, v in grad_norms.items():
logger.add('grad', k, v, it)
logger.add('learning rates', 'whole', optimizer.param_groups[0]['lr'], it)
#-------------------
# log losses
for k, v in losses.items():
logger.add('losses', k, v.data.cpu().numpy().item(), it)
#-------------------
# log extras
names = ["radiance", "alpha", "implicit_surface", "implicit_nablas_norm", "sigma_out", "radiance_out"]
for n in names:
p = "whole"
# key = "raw.{}".format(n)
key = n
if key in extras:
logger.add("extras_{}".format(n), "{}.mean".format(p), extras[key].mean().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.min".format(p), extras[key].min().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.max".format(p), extras[key].max().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.norm".format(p), extras[key].norm().data.cpu().numpy().item(), it)
if 'scalars' in extras:
for k, v in extras['scalars'].items():
logger.add('scalars', k, v.mean(), it)
#---------------------
# end of one iteration
end_time = time.time()
log.debug("=> One iteration time is {:.2f}".format(end_time - start_time))
it += world_size
if is_master():
pbar.update(world_size)
#---------------------
# end of one epoch
epoch_idx += 1
except KeyboardInterrupt:
if is_master():
checkpoint_io.save(filename='latest.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
sys.exit()
if is_master():
checkpoint_io.save(filename='final_{:08d}.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
logger.save_stats('stats.p')
log.info("Everything done.")
if __name__ == "__main__":
# Arguments
parser = io_util.create_args_parser()
parser.add_argument("--ddp", action='store_true', help='whether to use DDP to train.')
parser.add_argument("--port", type=int, default=None, help='master port for multi processing. (if used)')
args, unknown = parser.parse_known_args()
config = io_util.load_config(args, unknown)
main_function(config)