-
Notifications
You must be signed in to change notification settings - Fork 2
/
glossary.tex
55 lines (50 loc) · 2.17 KB
/
glossary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
\newabbreviation{erm}{ERM}{empirical risk minimization}
\newabbreviation{svm}{SVM}{support vector machine}
\newabbreviation{bnf}{BNF}{Backus–Naur form}
\newabbreviation{sql}{SQL}{structured query language}
\newabbreviation{ibm}{IBM}{International Business Machines Corporation}
\newabbreviation{rdbms}{RDBMS}{relational database management system}
\newabbreviation{etl}{ETL}{extract, transform, load}
\newabbreviation{bi}{BI}{business intelligence}
\newabbreviation{hdfs}{HDFS}{hadoop distributed file system}
\newabbreviation{lusi}{LUSI}{learning using statistical inference}
\newabbreviation{iot}{IoT}{internet of things}
\newabbreviation{lifo}{LIFO}{last-in-first-out}
\newabbreviation{fifo}{FIFO}{first-in-first-out}
\newabbreviation{pmf}{PMF}{probability mass function}
\newabbreviation{pdf}{PDF}{probability density function}
\newabbreviation{cdf}{CDF}{cumulative distribution function}
\newabbreviation{cicd}{CI/CD}{continuous integration/continuous deployment}
\newabbreviation{slt}{SLT}{statistical learning theory}
\newabbreviation{ai}{AI}{artificial intelligence}
\newabbreviation{ml}{ML}{machine learning}
\newabbreviation{vc}{VC}{Vapnik-Chervonenkis}
\newabbreviation{srm}{SRM}{structural risk minimization}
\newabbreviation{mlp}{MLP}{multilayer perceptron}
\newglossaryentry{ontology}{%
name=ontology,
description={%
Ontology is the study of being, existence and reality. In computer science and
information science, an ontology is a formal naming and definition of the types,
properties, and interrelationships of the entities that really or fundamentally exist
for a particular domain.}
}
\newglossaryentry{leakage}{%
name=data leakage,
description={%
Situation where information from the test set is used to transform the training
set in any way or to train the model.}
}
\newglossaryentry{model}{%
name=model,
description={%
A general function that can be used to estimate the relationship between the
input and output variables in a dataset.}
}
\newglossaryentry{preprocessor}{%
name=preprocessor,
description={%
A chain of data handling operations that transforms the input data into a format that
is suitable for the model.}
}
\makeglossaries