-
Notifications
You must be signed in to change notification settings - Fork 74
/
process_stats.py
219 lines (173 loc) · 7.05 KB
/
process_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import sys
import glob
import argparse
import numpy as np # standard convention for this library
import matplotlib.pyplot as m_plt
import synapse.common as s_common
def get_fn_prefix(bn):
l, r = bn.rsplit('_', 1)
return l[:-17]
def aggregate_raw_data(raw_data):
'''
Aggregate raw data into a workable hierarchy.
Args:
raw_data:
Notes:
Data is aggregated into the following hierarachy:
1. Prefix
2. Config name
3. Experiment name.
The num_iters value, workfactor, and count (per experiment) are all asserted to be equal.
Unequal data cannot be combined into the same prefix-config-experiment name set.
Returns:
dict: Dictionary of raw data.
'''
retn = {}
for record in raw_data:
niters = record.get('niters')
results = record.get('results')
workfactor = record.get('workfactor')
prefix = record.get('prefix', 'NOPREFIX')
config = record.get('configname', 'NOCONFIGNAME')
# Preconditions
assert niters is not None
assert results is not None
assert workfactor is not None
config2aggs = retn.setdefault(prefix, {})
aggdata = config2aggs.setdefault(config, {})
assert aggdata.setdefault('niters', niters) == niters
assert aggdata.setdefault('workfactor', workfactor) == workfactor
agg_results = aggdata.setdefault('results', {})
for exp_name, exp_results in results:
exp_agg_results = agg_results.setdefault(exp_name, {})
count = exp_results.get('count')
tottimes = exp_results.get('tottimes')
# We are using the tottiems value currently; as opposed to
# aggregating the full set of data. This full set is captured
# in the measurments key; but we've seen issues with the
# first value of a given test being a consistent outlier in
# past benchmark executions.
assert count is not None
assert tottimes is not None
assert exp_agg_results.setdefault('count', count) == count
exp_agg_tottimes = exp_agg_results.setdefault('tottimes', [])
exp_agg_tottimes.extend(tottimes)
return retn
def crunch_data(agg_data):
'''
Inplace computation of aggregate data per samples.
This injects numpy arrays into agg_data.
'''
print('Inplace data crunching')
for prefix, configdata in agg_data.items():
for config, aggdata in configdata.items():
for exp_name, exp_agg_results in aggdata.get('results').items():
# print(f'{prefix}|{config}|{exp_name}')
count = exp_agg_results.get('count')
tottimes = exp_agg_results.get('tottimes')
pertimes = [m / count for m in tottimes]
exp_agg_results['pertimes'] = pertimes
np_pertimes = np.array(pertimes)
exp_agg_results['np_pertimes'] = np_pertimes
# print(f'{prefix}|{config}|{exp_name}|{np_pertimes.mean()}')
def make_graphs(agg_data, outdir):
'''
Make matplotlib bar charts for visualizing test differences.
Charts are made with the following hierarchies
1. For each prefix, for each experiment, show the mean times across all the configs.
2. For each experiment, for each config, show the mean times across all the prefixes.
Error bars are inserted into chars as standard deviation values.
Args:
agg_data:
outdir:
Returns:
None
'''
p2e2c2d = {}
e2c2p2d = {}
for prefix, configdata in agg_data.items():
for config, aggdata in configdata.items():
for exp_name, exp_agg_results in aggdata.get('results').items():
np_pertimes = exp_agg_results.get('np_pertimes')
# rollup Set 1
e2c2d = p2e2c2d.setdefault(prefix, {})
c2d = e2c2d.setdefault(exp_name, {})
c2d[config] = np_pertimes
e2c2d[exp_name] = c2d
# rollup Set 2
c2p2d = e2c2p2d.setdefault(exp_name, {})
p2d = c2p2d.setdefault(config, {})
p2d[prefix] = np_pertimes
c2p2d[config] = p2d
# Generate first set of charts.
print('Making first set of charts.')
for prefix, e2c2d in p2e2c2d.items():
for exp_name, c2d in e2c2d.items():
configs = sorted(c2d.keys())
means = [np.mean(c2d.get(c)) for c in configs]
stds = [np.std(c2d.get(c)) for c in configs]
x_pos = np.arange(len(configs))
# Make our plots...
fig, ax = m_plt.subplots()
ax.bar(x_pos, means, yerr=stds, align='center',
alpha=0.5, ecolor='black', capsize=10)
ax.set_ylabel('time units. Lower is better.')
ax.set_xticks(x_pos)
ax.set_xticklabels(configs)
fig.autofmt_xdate()
ax.set_title(f'{prefix} -> {exp_name}')
ax.yaxis.grid(True)
# Save the figure and show
fp = s_common.genpath(outdir, f'{prefix}_{exp_name}.png')
m_plt.savefig(fp)
m_plt.close(fig)
print('Making second set of charts.')
for exp_name, c2p2d in e2c2p2d.items():
for config, p2d in c2p2d.items():
prefixes = sorted(p2d.keys())
means = [np.mean(p2d.get(p)) for p in prefixes]
stds = [np.std(p2d.get(p)) for p in prefixes]
x_pos = np.arange(len(prefixes))
# Make our plots...
fig, ax = m_plt.subplots()
ax.bar(x_pos, means, yerr=stds, align='center',
alpha=0.5, ecolor='black', capsize=10)
ax.set_ylabel('time units. Lower is better.')
ax.set_xticks(x_pos)
ax.set_xticklabels(prefixes)
fig.autofmt_xdate()
ax.set_title(f'{exp_name} -> {config}')
ax.yaxis.grid(True)
# Save the figure and show
fp = s_common.genpath(outdir, f'{exp_name}_{config}.png')
m_plt.savefig(fp)
m_plt.close(fig)
print('Done making charts.')
def main(argv):
pars = getParser()
opts = pars.parse_args(argv)
fps = sorted(list(glob.glob(os.path.join(opts.input, '*.json'))))
raw_data = []
prefs = set()
for fp in fps:
fn = os.path.basename(fp)
pref = get_fn_prefix(fn)
prefs.add(pref)
ldta = s_common.jsload(fp)
ldta.setdefault('prefix', pref)
raw_data.append(ldta)
agg_data = aggregate_raw_data(raw_data)
s_common.gendir(opts.output)
crunch_data(agg_data)
make_graphs(agg_data, opts.output)
return 0
def getParser():
pars = argparse.ArgumentParser()
pars.add_argument('-i', '--input', type=str, required=True,
help='Input directory of json files to parse.')
pars.add_argument('-o', '--output', type=str, required=True,
help='Output directory to save graphs too.')
return pars
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))