-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_test.go
324 lines (280 loc) · 8.74 KB
/
evaluate_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
package main
import (
"encoding/csv"
"errors"
"flag"
"fmt"
"math"
"os"
"path"
"path/filepath"
"strconv"
"strings"
"testing"
"github.com/montanaflynn/stats"
"go.viam.com/test"
"gonum.org/v1/gonum/stat/distuv"
)
type testResult struct {
name string
score map[int]*testScore
sha1 string
}
type testScore struct {
successes float64
qualities stats.Float64Data
performances stats.Float64Data
}
const nilFolder = ""
// flags used to define folders insider results folder to compare
var baselineFlag = flag.String("baselineDir", nilFolder, "name of test to use as a baseline")
var modifiedFlag = flag.String("modifiedDir", nilFolder, "name of test to compare to the baseline")
// these variables represent the lower and higher bounds (exclusive) for unacceptable and acceptable values respectively
var percentImprovementHealthThresholds = [2]float64{0, 0}
var probabilityImprovementHealthThresholds = [2]float64{16, 84} // numbers derive from first standard deviation of normal distribution
func TestScores(t *testing.T) {
baseline, err := scoreFolder(*baselineFlag)
test.That(t, err, test.ShouldBeNil)
modification, err := scoreFolder(*modifiedFlag)
test.That(t, err, test.ShouldBeNil)
// compare folders with results
test.That(t, compareResults(baseline, modification), test.ShouldBeNil)
}
func scoreFolder(folder string) (*testResult, error) {
if folder == nilFolder {
return nil, errors.New("folder not specified for flag baselineDir or modifiedDir")
}
fullPath := filepath.Join(resultsDirectory, folder)
fileInfo, err := os.Stat(fullPath)
if err != nil || !fileInfo.IsDir() {
return nil, fmt.Errorf("could not open folder: %s", fullPath)
}
runs, err := os.ReadDir(fullPath)
if err != nil {
return nil, err
}
f, err := os.Create(filepath.Join(fullPath, "results.csv"))
if err != nil {
return nil, err
}
defer f.Close()
w := csv.NewWriter(f)
defer w.Flush()
w.Write([]string{"scene", "seed", "success", "time", "total_score", "joint_score", "line_score", "orient_score"})
hashBytes, err := os.ReadFile(filepath.Join(fullPath, "hash"))
if err != nil {
return nil, err
}
results := &testResult{
name: folder,
score: make(map[int]*testScore, 0),
sha1: string(hashBytes),
}
for _, run := range runs {
if path.Ext(run.Name()) == ".txt" {
// parse file name to determine what the test parameters were
fileName := strings.Split(run.Name(), "_")
sceneNum, err := strconv.Atoi(strings.ReplaceAll(fileName[0], "scene", ""))
if err != nil {
return nil, err
}
// read the file and get the results of the run
bytes, err := os.ReadFile(filepath.Join(fullPath, run.Name()))
if err != nil {
return nil, err
}
rundata := strings.Split(string(bytes), ",")
// Parse whether was successful or not
pass := rundata[0]
// Parse time it took to complete
time, err := strconv.ParseFloat(strings.TrimSpace(rundata[1]), 64)
if err != nil {
return nil, err
}
score, ok := results.score[sceneNum]
if !ok {
score = &testScore{
qualities: make(stats.Float64Data, 0),
performances: make(stats.Float64Data, 0),
}
}
if pass == "true" {
data, err := readSolutionFromCSV(filepath.Join(fullPath, fileName[0]+"_"+fileName[1]+".csv"))
if err != nil {
return nil, err
}
jScore, tScore, oScore, err := evaluateSolution(data, sceneNum)
if err != nil {
return nil, err
}
w.Write([]string{
fileName[0],
fileName[1],
pass,
fmt.Sprintf("%f", time),
fmt.Sprintf("%f", jScore+tScore+oScore),
fmt.Sprintf("%f", jScore),
fmt.Sprintf("%f", tScore),
fmt.Sprintf("%f", oScore),
})
score.successes += 1
score.qualities = append(score.qualities, jScore)
score.performances = append(score.performances, time)
} else {
w.Write([]string{
fileName[0],
fileName[1],
pass,
fmt.Sprintf("%f", -1.),
fmt.Sprintf("%f", -1.),
fmt.Sprintf("%f", -1.),
fmt.Sprintf("%f", -1.),
fmt.Sprintf("%f", -1.),
})
}
results.score[sceneNum] = score
}
}
return results, nil
}
func compareResults(baseline, modification *testResult) error {
f, err := os.Create(filepath.Join(resultsDirectory, "motion-benchmarks.md"))
if err != nil {
return err
}
defer f.Close()
var builder strings.Builder
builder.WriteString(tableHeaderInts("Availability", baseline.name, modification.name))
for i := 1; i <= len(allScenes); i++ {
builder.WriteString(tableEntryInt(i, baseline.score[i].successes, modification.score[i].successes))
}
builder.WriteString(tableHeaderFloats("Quality", baseline.name, modification.name))
for i := 1; i <= len(allScenes); i++ {
builder.WriteString(tableEntryFloats(i, baseline.score[i].qualities, modification.score[i].qualities))
}
builder.WriteString(tableHeaderFloats("Performance", baseline.name, modification.name))
for i := 1; i <= len(allScenes); i++ {
builder.WriteString(tableEntryFloats(i, baseline.score[i].performances, modification.score[i].performances))
}
builder.WriteString("\nThe above data was generated by running scenes defined in the " +
"[`motion-testing`](https://github.com/viamrobotics/motion-testing/) repository")
builder.WriteString(fmt.Sprintf("\nThe SHA1 for %s is: %s", baseline.name, baseline.sha1))
builder.WriteString(fmt.Sprintf("\nThe SHA1 for %s is: %s", modification.name, modification.sha1))
builder.WriteString(fmt.Sprintf("\n* **%d samples** were taken for each scene", numTests))
builder.WriteString(fmt.Sprintf("\n* A timeout of **%.1f seconds** was imposed for each trial", timeout))
f.WriteString(builder.String())
return nil
}
func readSolutionFromCSV(filepath string) ([][]float64, error) {
csvfile, err := os.Open(filepath)
if err != nil {
return nil, err
}
defer csvfile.Close()
reader := csv.NewReader(csvfile)
fields, err := reader.ReadAll()
if err != nil {
return nil, err
}
solution := [][]float64{}
for _, waypoint := range fields {
step := make([]float64, 0, len(waypoint))
for _, pos := range waypoint {
posF, err := strconv.ParseFloat(pos, 64)
if err != nil {
return nil, err
}
step = append(step, posF)
}
solution = append(solution, step)
}
return solution, nil
}
func tableHeaderInts(name, baseline, modification string) string {
formatLine := "| :---: | :----: | :---: | :----: | :---: |\n"
return fmt.Sprintf("\n## %s\n| Scene # | %s | %s | Percent Improvement | Health | \n",
name,
baseline,
modification,
) + formatLine
}
func tableEntryInt(sceneNum int, initial, final float64) string {
delta := percentDifference(initial, final)
return fmt.Sprintf("| %d | %.0f%% | %.0f%% | %.0f%% | %c | \n",
sceneNum,
100*initial/numTests,
100*final/numTests,
delta,
healthIndicator(delta, percentImprovementHealthThresholds),
)
}
func tableHeaderFloats(name, baseline, modification string) string {
formatLine := "| :---: | :----: | :---: | :---: | :----: | :---: |\n"
return fmt.Sprintf("\n## %s\n| Scene # | %s | %s | Percent Improvement | Probability of Improvement | Health | \n",
name,
baseline,
modification,
) + formatLine
}
func tableEntryFloats(sceneNum int, initial, final stats.Float64Data) string {
// create normal distributions from initial and final float slices
A, AValid := normal(initial)
B, BValid := normal(final)
var probability float64
switch {
case AValid && BValid:
// create normal distribution C = B - A
C := distuv.Normal{
Mu: B.Mu - A.Mu,
Sigma: math.Sqrt(A.Sigma*A.Sigma + B.Sigma*B.Sigma),
}
switch {
case C.Sigma != 0:
// probability that B is an improvement over A is found by evaluating the CDF at x=0
probability = 100 * C.CDF(0)
case C.Mu < 0:
probability = 100
case C.Mu > 0:
probability = 0
default:
probability = 50
}
case AValid && !BValid:
probability = 0
case !AValid && BValid:
probability = 100
default:
probability = math.NaN()
}
delta := percentDifference(A.Mu, B.Mu)
return fmt.Sprintf("| %d | %.2f\u00B1%.2f | %.2f\u00B1%.2f | %.0f%% | %.0f%% | %c | \n",
sceneNum,
A.Mu, A.Sigma,
B.Mu, B.Sigma,
-delta, // want to flip it so its an improvement if its less
probability,
healthIndicator(probability, probabilityImprovementHealthThresholds),
)
}
func percentDifference(initial, final float64) float64 {
return 100.0 * (final - initial) / initial
}
// normal makes a normal distribution from the float slice
func normal(data stats.Float64Data) (distuv.Normal, bool) {
mean, err1 := data.Mean()
stdDev, err2 := data.StandardDeviation()
if err1 != nil || err2 != nil {
return distuv.Normal{Mu: math.NaN(), Sigma: math.NaN()}, false
}
return distuv.Normal{Mu: mean, Sigma: stdDev}, true
}
func healthIndicator(data float64, thresholds [2]float64) rune {
switch {
case data < thresholds[0]:
return '❌'
case data > thresholds[1]:
return '✅'
default:
return '➖'
}
}