-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvader_senitment.py
617 lines (539 loc) · 28.9 KB
/
vader_senitment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# coding: utf-8
# Author: C.J. Hutto
# Thanks to George Berry for reducing the time complexity from something like O(N^4) to O(N).
# Thanks to Ewan Klein and Pierpaolo Pantone for bringing VADER into NLTK. Those modifications were awesome.
# For license information, see LICENSE.TXT
"""
If you use the VADER sentiment analysis tools, please cite:
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. Eighth International Conference on
Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
"""
import math, re, string, requests, json
from itertools import product
from inspect import getsourcefile
from os.path import abspath, join, dirname
##Constants##
# (empirically derived mean sentiment intensity rating increase for booster words)
B_INCR = 0.293
B_DECR = -0.293
# (empirically derived mean sentiment intensity rating increase for using
# ALLCAPs to emphasize a word)
C_INCR = 0.733
N_SCALAR = -0.74
# for removing punctuation
REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation))
PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"",
"!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"]
NEGATE = \
["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt",
"ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't",
"dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither",
"don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't",
"neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere",
"oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent",
"oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't",
"without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"]
# booster/dampener 'intensifiers' or 'degree adverbs'
# http://en.wiktionary.org/wiki/Category:English_degree_adverbs
BOOSTER_DICT = \
{"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR,
"decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR,
"entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR,
"fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR,
"fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR,
"greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR,
"intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR,
"purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR,
"so": B_INCR, "substantially": B_INCR,
"thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR,
"uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR,
"very": B_INCR,
"almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR,
"kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR,
"less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR,
"scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR,
"sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR}
# check for special case idioms using a sentiment-laden keyword known to VADER
SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2,
"cut the mustard": 2, "kiss of death": -1.5, "hand to mouth": -2}
##Static methods##
def negated(input_words, include_nt=True):
"""
Determine if input contains negation words
"""
neg_words = []
neg_words.extend(NEGATE)
for word in neg_words:
if word in input_words:
return True
if include_nt:
for word in input_words:
if "n't" in word:
return True
if "least" in input_words:
i = input_words.index("least")
if i > 0 and input_words[i - 1] != "at":
return True
return False
def normalize(score, alpha=15):
"""
Normalize the score to be between -1 and 1 using an alpha that
approximates the max expected value
"""
norm_score = score / math.sqrt((score * score) + alpha)
if norm_score < -1.0:
return -1.0
elif norm_score > 1.0:
return 1.0
else:
return norm_score
def allcap_differential(words):
"""
Check whether just some words in the input are ALL CAPS
:param list words: The words to inspect
:returns: `True` if some but not all items in `words` are ALL CAPS
"""
is_different = False
allcap_words = 0
for word in words:
if word.isupper():
allcap_words += 1
cap_differential = len(words) - allcap_words
if cap_differential > 0 and cap_differential < len(words):
is_different = True
return is_different
def scalar_inc_dec(word, valence, is_cap_diff):
"""
Check if the preceding words increase, decrease, or negate/nullify the
valence
"""
scalar = 0.0
word_lower = word.lower()
if word_lower in BOOSTER_DICT:
scalar = BOOSTER_DICT[word_lower]
if valence < 0:
scalar *= -1
# check if booster/dampener word is in ALLCAPS (while others aren't)
if word.isupper() and is_cap_diff:
if valence > 0:
scalar += C_INCR
else:
scalar -= C_INCR
return scalar
class SentiText(object):
"""
Identify sentiment-relevant string-level properties of input text.
"""
def __init__(self, text):
if not isinstance(text, str):
text = str(text.encode('utf-8'))
self.text = text
self.words_and_emoticons = self._words_and_emoticons()
# doesn't separate words from\
# adjacent punctuation (keeps emoticons & contractions)
self.is_cap_diff = allcap_differential(self.words_and_emoticons)
def _words_plus_punc(self):
"""
Returns mapping of form:
{
'cat,': 'cat',
',cat': 'cat',
}
"""
no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text)
# removes punctuation (but loses emoticons & contractions)
words_only = no_punc_text.split()
# remove singletons
words_only = set(w for w in words_only if len(w) > 1)
# the product gives ('cat', ',') and (',', 'cat')
punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)}
punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)}
words_punc_dict = punc_before
words_punc_dict.update(punc_after)
return words_punc_dict
def _words_and_emoticons(self):
"""
Removes leading and trailing puncutation
Leaves contractions and most emoticons
Does not preserve punc-plus-letter emoticons (e.g. :D)
"""
wes = self.text.split()
words_punc_dict = self._words_plus_punc()
wes = [we for we in wes if len(we) > 1]
for i, we in enumerate(wes):
if we in words_punc_dict:
wes[i] = words_punc_dict[we]
return wes
class SentimentIntensityAnalyzer(object):
"""
Give a sentiment intensity score to sentences.
"""
def __init__(self, lexicon_file="vader_lexicon.txt"):
_this_module_file_path_ = abspath(getsourcefile(lambda: 0))
lexicon_full_filepath = join(dirname(_this_module_file_path_), lexicon_file)
with open(lexicon_full_filepath, encoding='utf-8') as f:
self.lexicon_full_filepath = f.read()
self.lexicon = self.make_lex_dict()
def make_lex_dict(self):
"""
Convert lexicon file to a dictionary
"""
lex_dict = {}
for line in self.lexicon_full_filepath.split('\n'):
(word, measure) = line.strip().split('\t')[0:2]
lex_dict[word] = float(measure)
return lex_dict
def polarity_scores(self, text):
"""
Return a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative
valence.
"""
sentitext = SentiText(text)
# text, words_and_emoticons, is_cap_diff = self.preprocess(text)
sentiments = []
words_and_emoticons = sentitext.words_and_emoticons
for item in words_and_emoticons:
valence = 0
i = words_and_emoticons.index(item)
if (i < len(words_and_emoticons) - 1 and item.lower() == "kind" and \
words_and_emoticons[i + 1].lower() == "of") or \
item.lower() in BOOSTER_DICT:
sentiments.append(valence)
continue
sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)
sentiments = self._but_check(words_and_emoticons, sentiments)
valence_dict = self.score_valence(sentiments, text)
return valence_dict
def sentiment_valence(self, valence, sentitext, item, i, sentiments):
is_cap_diff = sentitext.is_cap_diff
words_and_emoticons = sentitext.words_and_emoticons
item_lowercase = item.lower()
if item_lowercase in self.lexicon:
# get the sentiment valence
valence = self.lexicon[item_lowercase]
# check if sentiment laden word is in ALL CAPS (while others aren't)
if item.isupper() and is_cap_diff:
if valence > 0:
valence += C_INCR
else:
valence -= C_INCR
for start_i in range(0, 3):
if i > start_i and words_and_emoticons[i - (start_i + 1)].lower() not in self.lexicon:
# dampen the scalar modifier of preceding words and emoticons
# (excluding the ones that immediately preceed the item) based
# on their distance from the current item.
s = scalar_inc_dec(words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff)
if start_i == 1 and s != 0:
s = s * 0.95
if start_i == 2 and s != 0:
s = s * 0.9
valence = valence + s
valence = self._never_check(valence, words_and_emoticons, start_i, i)
if start_i == 2:
valence = self._idioms_check(valence, words_and_emoticons, i)
# future work: consider other sentiment-laden idioms
# other_idioms =
# {"back handed": -2, "blow smoke": -2, "blowing smoke": -2,
# "upper hand": 1, "break a leg": 2,
# "cooking with gas": 2, "in the black": 2, "in the red": -2,
# "on the ball": 2,"under the weather": -2}
valence = self._least_check(valence, words_and_emoticons, i)
sentiments.append(valence)
return sentiments
def _least_check(self, valence, words_and_emoticons, i):
# check for negation case using "least"
if i > 1 and words_and_emoticons[i - 1].lower() not in self.lexicon \
and words_and_emoticons[i - 1].lower() == "least":
if words_and_emoticons[i - 2].lower() != "at" and words_and_emoticons[i - 2].lower() != "very":
valence = valence * N_SCALAR
elif i > 0 and words_and_emoticons[i - 1].lower() not in self.lexicon \
and words_and_emoticons[i - 1].lower() == "least":
valence = valence * N_SCALAR
return valence
def _but_check(self, words_and_emoticons, sentiments):
# check for modification in sentiment due to contrastive conjunction 'but'
if 'but' in words_and_emoticons or 'BUT' in words_and_emoticons:
try:
bi = words_and_emoticons.index('but')
except ValueError:
bi = words_and_emoticons.index('BUT')
for sentiment in sentiments:
si = sentiments.index(sentiment)
if si < bi:
sentiments.pop(si)
sentiments.insert(si, sentiment * 0.5)
elif si > bi:
sentiments.pop(si)
sentiments.insert(si, sentiment * 1.5)
return sentiments
def _idioms_check(self, valence, words_and_emoticons, i):
onezero = "{0} {1}".format(words_and_emoticons[i - 1], words_and_emoticons[i])
twoonezero = "{0} {1} {2}".format(words_and_emoticons[i - 2],
words_and_emoticons[i - 1], words_and_emoticons[i])
twoone = "{0} {1}".format(words_and_emoticons[i - 2], words_and_emoticons[i - 1])
threetwoone = "{0} {1} {2}".format(words_and_emoticons[i - 3],
words_and_emoticons[i - 2], words_and_emoticons[i - 1])
threetwo = "{0} {1}".format(words_and_emoticons[i - 3], words_and_emoticons[i - 2])
sequences = [onezero, twoonezero, twoone, threetwoone, threetwo]
for seq in sequences:
if seq in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[seq]
break
if len(words_and_emoticons) - 1 > i:
zeroone = "{0} {1}".format(words_and_emoticons[i], words_and_emoticons[i + 1])
if zeroone in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroone]
if len(words_and_emoticons) - 1 > i + 1:
zeroonetwo = "{0} {1} {2}".format(words_and_emoticons[i], words_and_emoticons[i + 1],
words_and_emoticons[i + 2])
if zeroonetwo in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroonetwo]
# check for booster/dampener bi-grams such as 'sort of' or 'kind of'
if threetwo in BOOSTER_DICT or twoone in BOOSTER_DICT:
valence = valence + B_DECR
return valence
def _never_check(self, valence, words_and_emoticons, start_i, i):
if start_i == 0:
if negated([words_and_emoticons[i - 1]]):
valence = valence * N_SCALAR
if start_i == 1:
if words_and_emoticons[i - 2] == "never" and \
(words_and_emoticons[i - 1] == "so" or
words_and_emoticons[i - 1] == "this"):
valence = valence * 1.5
elif negated([words_and_emoticons[i - (start_i + 1)]]):
valence = valence * N_SCALAR
if start_i == 2:
if words_and_emoticons[i - 3] == "never" and \
(words_and_emoticons[i - 2] == "so" or words_and_emoticons[i - 2] == "this") or \
(words_and_emoticons[i - 1] == "so" or words_and_emoticons[i - 1] == "this"):
valence = valence * 1.25
elif negated([words_and_emoticons[i - (start_i + 1)]]):
valence = valence * N_SCALAR
return valence
def _punctuation_emphasis(self, sum_s, text):
# add emphasis from exclamation points and question marks
ep_amplifier = self._amplify_ep(text)
qm_amplifier = self._amplify_qm(text)
punct_emph_amplifier = ep_amplifier + qm_amplifier
return punct_emph_amplifier
def _amplify_ep(self, text):
# check for added emphasis resulting from exclamation points (up to 4 of them)
ep_count = text.count("!")
if ep_count > 4:
ep_count = 4
# (empirically derived mean sentiment intensity rating increase for
# exclamation points)
ep_amplifier = ep_count * 0.292
return ep_amplifier
def _amplify_qm(self, text):
# check for added emphasis resulting from question marks (2 or 3+)
qm_count = text.count("?")
qm_amplifier = 0
if qm_count > 1:
if qm_count <= 3:
# (empirically derived mean sentiment intensity rating increase for
# question marks)
qm_amplifier = qm_count * 0.18
else:
qm_amplifier = 0.96
return qm_amplifier
def _sift_sentiment_scores(self, sentiments):
# want separate positive versus negative sentiment scores
pos_sum = 0.0
neg_sum = 0.0
neu_count = 0
for sentiment_score in sentiments:
if sentiment_score > 0:
pos_sum += (float(sentiment_score) + 1) # compensates for neutral words that are counted as 1
if sentiment_score < 0:
neg_sum += (float(sentiment_score) - 1) # when used with math.fabs(), compensates for neutrals
if sentiment_score == 0:
neu_count += 1
return pos_sum, neg_sum, neu_count
def score_valence(self, sentiments, text):
if sentiments:
sum_s = float(sum(sentiments))
# compute and add emphasis from punctuation in text
punct_emph_amplifier = self._punctuation_emphasis(sum_s, text)
if sum_s > 0:
sum_s += punct_emph_amplifier
elif sum_s < 0:
sum_s -= punct_emph_amplifier
compound = normalize(sum_s)
# discriminate between positive, negative and neutral sentiment scores
pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments)
if pos_sum > math.fabs(neg_sum):
pos_sum += (punct_emph_amplifier)
elif pos_sum < math.fabs(neg_sum):
neg_sum -= (punct_emph_amplifier)
total = pos_sum + math.fabs(neg_sum) + neu_count
pos = math.fabs(pos_sum / total)
neg = math.fabs(neg_sum / total)
neu = math.fabs(neu_count / total)
else:
compound = 0.0
pos = 0.0
neg = 0.0
neu = 0.0
sentiment_dict = \
{"neg": round(neg, 3),
"neu": round(neu, 3),
"pos": round(pos, 3),
"compound": round(compound, 4)}
return sentiment_dict
if __name__ == '__main__':
# --- examples -------
sentences = ["VADER is smart, handsome, and funny.", # positive sentence example
"VADER is not smart, handsome, nor funny.", # negation sentence example
"VADER is smart, handsome, and funny!",
# punctuation emphasis handled correctly (sentiment intensity adjusted)
"VADER is very smart, handsome, and funny.",
# booster words handled correctly (sentiment intensity adjusted)
"VADER is VERY SMART, handsome, and FUNNY.", # emphasis for ALLCAPS handled
"VADER is VERY SMART, handsome, and FUNNY!!!",
# combination of signals - VADER appropriately adjusts intensity
"VADER is VERY SMART, uber handsome, and FRIGGIN FUNNY!!!",
# booster words & punctuation make this close to ceiling for score
"The book was good.", # positive sentence
"The book was kind of good.", # qualified positive sentence is handled correctly (intensity adjusted)
"The plot was good, but the characters are uncompelling and the dialog is not great.",
# mixed negation sentence
"At least it isn't a horrible book.", # negated negative sentence with contraction
"Make sure you :) or :D today!", # emoticons handled
"Today SUX!", # negative slang with capitalization emphasis
"Today only kinda sux! But I'll get by, lol"
# mixed sentiment example with slang and constrastive conjunction "but"
]
analyzer = SentimentIntensityAnalyzer()
print("----------------------------------------------------")
print(" - Analyze typical example cases, including handling of:")
print(" -- negations")
print(" -- punctuation emphasis & punctuation flooding")
print(" -- word-shape as emphasis (capitalization difference)")
print(" -- degree modifiers (intensifiers such as 'very' and dampeners such as 'kind of')")
print(" -- slang words as modifiers such as 'uber' or 'friggin' or 'kinda'")
print(" -- contrastive conjunction 'but' indicating a shift in sentiment; sentiment of later text is dominant")
print(" -- use of contractions as negations")
print(" -- sentiment laden emoticons such as :) and :D")
print(" -- sentiment laden slang words (e.g., 'sux')")
print(" -- sentiment laden initialisms and acronyms (for example: 'lol') \n")
for sentence in sentences:
vs = analyzer.polarity_scores(sentence)
print("{:-<65} {}".format(sentence, str(vs)))
print("----------------------------------------------------")
print(" - About the scoring: ")
print(""" -- The 'compound' score is computed by summing the valence scores of each word in the lexicon, adjusted
according to the rules, and then normalized to be between -1 (most extreme negative) and +1 (most extreme positive).
This is the most useful metric if you want a single unidimensional measure of sentiment for a given sentence.
Calling it a 'normalized, weighted composite score' is accurate.""")
print(""" -- The 'pos', 'neu', and 'neg' scores are ratios for proportions of text that fall in each category (so these
should all add up to be 1... or close to it with float operation). These are the most useful metrics if
you want multidimensional measures of sentiment for a given sentence.""")
print("----------------------------------------------------")
input("\nPress Enter to continue the demo...\n") # for DEMO purposes...
tricky_sentences = ["Sentiment analysis has never been good.",
"Sentiment analysis has never been this good!",
"Most automated sentiment analysis tools are shit.",
"With VADER, sentiment analysis is the shit!",
"Other sentiment analysis tools can be quite bad.",
"On the other hand, VADER is quite bad ass!",
"Roger Dodger is one of the most compelling variations on this theme.",
"Roger Dodger is one of the least compelling variations on this theme.",
"Roger Dodger is at least compelling as a variation on the theme."
]
print("----------------------------------------------------")
print(" - Analyze examples of tricky sentences that cause trouble to other sentiment analysis tools.")
print(" -- special case idioms - e.g., 'never good' vs 'never this good', or 'bad' vs 'bad ass'.")
print(" -- special uses of 'least' as negation versus comparison \n")
for sentence in tricky_sentences:
vs = analyzer.polarity_scores(sentence)
print("{:-<69} {}".format(sentence, str(vs)))
print("----------------------------------------------------")
input("\nPress Enter to continue the demo...\n") # for DEMO purposes...
print("----------------------------------------------------")
print(
" - VADER works best when analysis is done at the sentence level (but it can work on single words or entire novels).")
paragraph = "It was one of the worst movies I've seen, despite good reviews. Unbelievably bad acting!! Poor direction. VERY poor production. The movie was bad. Very bad movie. VERY BAD movie!"
print(" -- For example, given the following paragraph text from a hypothetical movie review:\n\t'{}'".format(
paragraph))
print(
" -- You could use NLTK to break the paragraph into sentence tokens for VADER, then average the results for the paragraph like this: \n")
# simple example to tokenize paragraph into sentences for VADER
from nltk import tokenize
sentence_list = tokenize.sent_tokenize(paragraph)
paragraphSentiments = 0.0
for sentence in sentence_list:
vs = analyzer.polarity_scores(sentence)
print("{:-<69} {}".format(sentence, str(vs["compound"])))
paragraphSentiments += vs["compound"]
print("AVERAGE SENTIMENT FOR PARAGRAPH: \t" + str(round(paragraphSentiments / len(sentence_list), 4)))
print("----------------------------------------------------")
input("\nPress Enter to continue the demo...\n") # for DEMO purposes...
print("----------------------------------------------------")
print(" - Analyze sentiment of IMAGES/VIDEO data based on annotation 'tags' or image labels. \n")
conceptList = ["balloons", "cake", "candles", "happy birthday", "friends", "laughing", "smiling", "party"]
conceptSentiments = 0.0
for concept in conceptList:
vs = analyzer.polarity_scores(concept)
print("{:-<15} {}".format(concept, str(vs['compound'])))
conceptSentiments += vs["compound"]
print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4)))
print("\t")
conceptList = ["riot", "fire", "fight", "blood", "mob", "war", "police", "tear gas"]
conceptSentiments = 0.0
for concept in conceptList:
vs = analyzer.polarity_scores(concept)
print("{:-<15} {}".format(concept, str(vs['compound'])))
conceptSentiments += vs["compound"]
print("AVERAGE SENTIMENT OF TAGS/LABELS: \t" + str(round(conceptSentiments / len(conceptList), 4)))
print("----------------------------------------------------")
("\nPress Enter to continue the demo...") # for DEMO purposes...
do_translate = input(
"\nWould you like to run VADER demo examples with NON-ENGLISH text? (Note: requires Internet access) \n Type 'y' or 'n', then press Enter: ")
if do_translate.lower().lstrip() == 'y':
print("/n----------------------------------------------------")
print(" - Analyze sentiment of NON ENGLISH text...for example:")
print(" -- French, German, Spanish, Italian, Russian, Japanese, Arabic, Chinese")
print(" -- many other languages supported. \n")
languages = ["English", "French", "German", "Spanish", "Italian", "Russian", "Japanese", "Arabic", "Chinese"]
language_codes = ["en", "fr", "de", "es", "it", "ru", "ja", "ar", "zh"]
nonEnglish_sentences = ["I'm surprised to see just how amazingly helpful VADER is!",
"Je suis surpris de voir juste comment incroyablement utile VADER est!",
"Ich bin überrascht zu sehen, nur wie erstaunlich nützlich VADER!",
"Me sorprende ver sólo cómo increíblemente útil VADER!",
"Sono sorpreso di vedere solo come incredibilmente utile VADER è!",
"Я удивлен увидеть, как раз как удивительно полезно ВЕЙДЕРА!",
"私はちょうどどのように驚くほど役に立つベイダーを見て驚いています!",
"أنا مندهش لرؤية فقط كيف مثير للدهشة فيدر فائدة!",
"惊讶地看到有用维德是的只是如何令人惊讶了 !"
]
for sentence in nonEnglish_sentences:
to_lang = "en"
from_lang = language_codes[nonEnglish_sentences.index(sentence)]
if (from_lang == "en") or (from_lang == "en-US"):
translation = sentence
translator_name = "No translation needed"
else:
# please note usage limits for My Memory Translation Service: http://mymemory.translated.net/doc/usagelimits.php
# using MY MEMORY NET http://mymemory.translated.net
api_url = "http://mymemory.translated.net/api/get?q={}&langpair={}|{}".format(sentence, from_lang,
to_lang)
hdrs = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
'Accept-Encoding': 'none',
'Accept-Language': 'en-US,en;q=0.8',
'Connection': 'keep-alive'}
response = requests.get(api_url, headers=hdrs)
response_json = json.loads(response.text)
translation = response_json["responseData"]["translatedText"]
translator_name = "MemoryNet Translation Service"
vs = analyzer.polarity_scores(translation)
print("- {: <8}: {: <69}\t {} ({})".format(languages[nonEnglish_sentences.index(sentence)], sentence,
str(vs['compound']), translator_name))
print("----------------------------------------------------")
print("\n\n Demo Done!")