-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
70 lines (55 loc) · 2.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from mlProject import logger
from mlProject.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from mlProject.pipeline.stage_02_data_validation import DataValidationTrainingPipeline
from mlProject.pipeline.stage_03_data_transformation import DataTransformationTrainingPipeline
from mlProject.pipeline.stage_04_model_trainer import ModelTrainerTrainingPipeline
from mlProject.pipeline.stage_05_model_evaluation import ModelEvaluationTrainingPipeline
os.environ["MLFLOW_TRACKING_URI"] = "https://dagshub.com/vijayg15/Machine-Learning-project-with-MLflow-deployment.mlflow"
os.environ["MLFLOW_TRACKING_USERNAME"] = "vijayg15"
os.environ["MLFLOW_TRACKING_PASSWORD"] = "032a6763f4e1199604dda938e424da596b24ccba"
STAGE_NAME = "Data Ingestion stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Data Validation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataValidationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Data Transformation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataTransformationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Trainer stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = ModelTrainerTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model evaluation stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = ModelEvaluationTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e