-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_filters.py
207 lines (161 loc) · 6.35 KB
/
img_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Numpy offers comprehensive mathematical functions in Python
import numpy as np
# OpenCV provides a optimized tools for Computer Vision.
import cv2 as cv
# Matplotlib is a library for creating visualizations in Python.
from matplotlib import pyplot as plt
#Scikit-image offers a random noise method
from skimage.util import random_noise
def padding_convolution():
src_img = cv.imread('./images/house.jpg', cv.IMREAD_GRAYSCALE)
#Define a kernel
kernel = np.array([
[3, 0, -3],
[10, 0, -10],
[3, 0, -3]
])
#Apply padding
img = cv.copyMakeBorder(src_img, 20, 20, 20, 20, cv.BORDER_CONSTANT, None, value=0)
zero_padding = cv.copyMakeBorder(src_img, 20, 20, 20, 20, cv.BORDER_CONSTANT) #Adds a constant colored border
wrap_padding = cv.copyMakeBorder(src_img, 20, 20, 20, 20, cv.BORDER_WRAP) #wraps the image by repeating the border elements
clamp_padding = cv.copyMakeBorder(src_img, 20, 20, 20, 20, cv.BORDER_REPLICATE) #last element is replicated
mirror_padding = cv.copyMakeBorder(src_img, 20, 20, 20, 20, cv.BORDER_REFLECT) #border will be mirror reflection of the border elements
#Apply convolution
conv_mat = cv.filter2D(src_img, -1, kernel) #-1 means the output image will have the same depth as the source image
#Visualize the results
plt.figure(figsize=(18, 8), dpi=96)
plt.subplot(1, 6, 1)
plt.title("source image")
plt.imshow(src_img, cmap='gray')
plt.subplot(1, 6, 2)
plt.title("zero padding")
plt.imshow(zero_padding, cmap=plt.cm.gray)
plt.subplot(1, 6, 3)
plt.title("wrap padding")
plt.imshow(wrap_padding, cmap=plt.cm.gray)
plt.subplot(1, 6, 4)
plt.title("clamp padding")
plt.imshow(clamp_padding, cmap=plt.cm.gray)
plt.subplot(1, 6, 5)
plt.title("mirror padding")
plt.imshow(mirror_padding, cmap=plt.cm.gray)
plt.subplot(1, 6, 6)
plt.title("convolution result")
plt.imshow(conv_mat, cmap='gray')
plt.tight_layout()
plt.savefig('output/padding_convolution.png')
plt.show()
def box_binomial_median_filters():
src_img = cv.imread('./images/house.jpg', cv.IMREAD_GRAYSCALE)
#Box filter
box_kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5)) / 25
box_result = cv.filter2D(src_img, -1, box_kernel) #convolution result using box filter
#Binomial filter
binomial_kernel = np.array([
[1, 2, 1],
[2, 4, 2],
[1, 2, 1]
]) / 16
binomial_result = cv.filter2D(src_img, -1, binomial_kernel) #convolution result using binomial filter
#Median filter for salt and pepper noise
saltNpepper_noise_img = (255 * random_noise(src_img, mode='s&p')).astype(np.uint8)
median_result = cv.medianBlur(saltNpepper_noise_img, 5) #convolution result using median filter
#Visualize and save the results
plt.figure(figsize=(6, 9), dpi=109)
plt.subplot(3, 2, 1)
plt.imshow(src_img, cmap='gray')
plt.title("source image")
plt.axis('off')
plt.subplot(3, 2, 2)
plt.imshow(box_result, cmap='gray')
plt.title("box filter")
plt.axis('off')
plt.subplot(3, 2, 3)
plt.imshow(src_img, cmap='gray')
plt.title("source image")
plt.axis('off')
plt.subplot(3, 2, 4)
plt.imshow(binomial_result, cmap='gray')
plt.title("binomial filter")
plt.axis('off')
plt.subplot(3, 2, 5)
plt.imshow(saltNpepper_noise_img, cmap='gray')
plt.title("image with B/W noise")
plt.axis('off')
plt.subplot(3, 2, 6)
plt.imshow(median_result, cmap='gray')
plt.title("median filter")
plt.axis('off')
plt.tight_layout()
plt.savefig('output/box_binomial_median_filters.png')
plt.show()
return box_result, binomial_result, median_result
def sobel_filter():
src_img = cv.imread('./images/house.jpg', cv.IMREAD_GRAYSCALE)
#kernel of sobel filter in x direction
sobel_x_kernel = np.array([
[1, 0, -1],
[2, 0, -2],
[1, 0, -1]
]) / 8
#kernel of sobel filter in y direction
sobel_y_kernel = np.array([
[1, 2, 1],
[0, 0, 0],
[-1, -2, -1]
]) / 8
gradient_x = cv.filter2D(src_img, cv.CV_64F, sobel_x_kernel) #image gradient in x direction
gradient_y = cv.filter2D(src_img, cv.CV_64F, sobel_y_kernel) #image gradient in y direction
#Alternative way to calculate the gradient in x and y direction with cv.Sobel
# gradient_x = cv.Sobel(src_img, cv.CV_64F, dx=1, dy=0, ksize=3)
# gradient_y = cv.Sobel(src_img, cv.CV_64F, dx=0, dy=1, ksize=3)
#Combining this two we can identify parts of the image that look like edges
magnitude = np.sqrt((gradient_x ** 2) + (gradient_y ** 2)) # magnitude of the gradient shows how strongly the intensity changes
direction = np.arctan2(gradient_y, gradient_x) #shows the angle of the gradient
#Visualize and save the results
plt.figure(figsize=(6, 6), dpi=109)
plt.subplot(2, 2, 1)
plt.imshow(gradient_x, cmap='gray')
plt.title("sobel_gradient_x")
plt.axis('off')
plt.subplot(2, 2, 2)
plt.imshow(magnitude, cmap='Greys')
plt.title("magnitude")
plt.axis('off')
plt.subplot(2, 2, 3)
plt.imshow(gradient_y, cmap='gray')
plt.title("sobel_gradient_y")
plt.axis('off')
plt.subplot(2, 2, 4)
direction[magnitude < 5] = np.nan
plt.imshow(direction, cmap='hsv')
plt.title("direction")
plt.axis('off')
plt.tight_layout()
plt.savefig('output/sobel_filter.png')
plt.show()
def laplacian_filter(binomial_result):
src_img = cv.imread('./images/house.jpg', cv.IMREAD_GRAYSCALE)
#Kernel of laplacian filter
laplacian_kernel_4 = np.array([
[0, 1, 0],
[1, -4, 1],
[0, 1, 0]
])
#Apply laplacian filter - increased noise level (interprets image noise as an edge)
lap = cv.filter2D(src_img, -1, laplacian_kernel_4)
#Apply laplacian filter on the smoothed image after binomial filter - clear edges in the final result
lap_binomial = cv.filter2D(binomial_result, -1, laplacian_kernel_4)
#Visualize and save the results
plt.figure(figsize=(6, 3), dpi=109)
plt.subplot(1, 2, 1)
plt.imshow(cv.convertScaleAbs(lap), cmap='gray')
plt.axis('off')
plt.title("Laplacian 4")
plt.subplot(1, 2, 2)
plt.imshow(cv.convertScaleAbs(lap_binomial), cmap='gray')
plt.axis('off')
plt.title("Laplacian 4 on binomial")
plt.tight_layout()
plt.savefig('output/laplacian_filter.png')
plt.show()