-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path2-opt.py
141 lines (124 loc) · 4.22 KB
/
2-opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding: utf-8
# Author: Vinay Chourasiya
import time
start_time = time.time()
from readData import ReadData
import numpy as np
import sys
class TwoOPT:
"""
2-opt:
Generate intial tour
and improve it by deleting 1 one edges
and change with other
-- It gives nearly optimal tour
"""
def __init__(self, file):
"""
Intialize: Instaces file,
Distance Matrix,
and size
"""
self.file = file
self.instance = ReadData(self.file)
self.size = self.instance.size
self.dis_mat = self.instance.GetDistanceMat()
self.time_read = self.instance.time_to_read
self.time_algo = 0
def get_initial_tour(self):
"""
Return: intial tour
"""
return [*range(1, self.size + 1)]
def Swap(self, tour, x, y):
"""
tour : Given TSP tour
x = swappping First index in tour
y = swappping last index in tour
return : new_tour with perfomming swapping
note: x and y should be index only (in tour) not exact city number
"""
new_tour = tour[:x] + [*reversed(tour[x:y + 1])] + tour[y + 1:]
return new_tour
def get_distance(self, tour):
"""
Given any tour it return total distance of
given tour
dis_mat : distance matrix
"""
total_dis = 0
for ind, r in enumerate(tour):
_from = r
if ind + 1 == len(tour):
_to = tour[0]
total_dis += self.dis_mat[_from - 1][_to - 1]
else:
_to = tour[ind + 1]
total_dis += self.dis_mat[_from - 1][_to - 1]
return total_dis
def _optimize(self, initial_tour, Debuglevel=0):
"""
Improve existing tour
using 2-opt method
"""
minchange = -1
tour = initial_tour
while minchange < 0:
minchange = 0
for i in range(self.size - 3):
for j in range(i + 2, self.size - 1):
t1 = tour[i]
t2 = tour[i + 1]
t3 = tour[j]
t4 = tour[j + 1]
change = (self.dis_mat[t1 - 1][t3 - 1] +
self.dis_mat[t2 - 1][t4 - 1] -
self.dis_mat[t1 - 1][t2 - 1] -
self.dis_mat[t3 - 1][t4 - 1])
if change < minchange:
minchange = change
tour = self.Swap(tour, i + 1, j)
if Debuglevel:
print("Tour After Change : ", minchange, "Distances: ",
self.get_distance(tour))
self.best_tour = tour
return tour
def _initial_random_tour(self,seed):
""""
Return randomly generated tour
"""
np.random.seed(seed)
T = np.arange(1,self.size+1)
np.random.shuffle(T)
return list(T)
def run(self):
tours = []
tours_dist = []
self._write_info()
for r in range(5):
T = self._initial_random_tour(r+100)
tour = self._optimize(T)
tour_distance = self.get_distance(tour)
tours.append(tour)
tours_dist.append(tour_distance)
self._best_tour(tours,tours_dist)
def _best_tour(self,Ts,Tsd):
min_dist_index = np.argmin(Tsd)
self._writestat(Tsd[min_dist_index], Ts[min_dist_index])
def _write_info(self):
print("Instance name:", self.instance.name)
print("Dimention:", self.size)
print("Distance Type:", self.instance.EdgeWeightType)
print("\n \t \t Running 2-opt over 5 random tour ")
def _writestat(self,D,T):
print("\n Tour Distance: ",D)
print(" Best Tour by 2-opt is: \n", T)
print("\n Time to read instance (sec): ", round(self.time_read))
self.time_algo = time.time() - start_time
print(" Time to run instances(sec): ", round(self.time_algo))
print(" Total Time (sec): ", round(self.time_read+self.time_algo))
if len(sys.argv)<2:
print("need inpute file")
sys.exit(1)
t = TwoOPT(sys.argv[1])
t.run()