-
Notifications
You must be signed in to change notification settings - Fork 1
/
122A Homework 1 - Complex Numbers and Convergence.tex
213 lines (166 loc) · 8.66 KB
/
122A Homework 1 - Complex Numbers and Convergence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 1} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122A \\
July 3, 2017
\end{center}
\section*{Monday}
\begin{enumerate}
\item[4.]
\begin{enumerate}
\item Show $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
\begin{proof}
First, denote $z_k = x_k - iy_k$.
Then,
\[\begin{aligned}
\overline{z_1} + \overline{z_2}
&= (x_1 - iy_1) + (x_2 - iy_2) \\
&= (x_1 + x_2) -i(y_1 + y_2)
\end{aligned}
\]
Furthermore, because $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$, this implies
$\overline{z_1 + z_2} = (x_1 + x_2) - i(y_1 + y_2)$.
Therefore, $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$.
\end{proof}
\item Show $\overline{z_1\cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.
\begin{proof}
First, $\overline{z_1} \cdot \overline{z_2} = (x_1 - iy_1) \cdot (x_2 - iy_2)$. Simplifying, we get $x_1x_2 - ix_1y_2 - ix_2y_1 + i^2y_1y_2$ or equivalently $x_1x_2 - y_1y_2 - i(x_1y_2 + x_2y_1)$.
\bigskip
Continuing,
\[\begin{aligned}
z_1 \cdot z_2
&= (x_1 + iy_1) \cdot (x_2 + iy_2) \\
&= x_1\cdot x_2 + i\cdot x_1y_2 + i\cdot x_2y_1 + i^2 y_1y_2 \\
&= (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)
\end{aligned}
\]
This implies that $\overline{z_1 \cdot z_2} = (x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1)$. Therefore, $\overline{z_1\cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
\end{proof}
\item Show that $\overline{P(z)} = P(\overline{z})$ where $P$ is any polynomial with real coefficients.
\begin{proof}
Let $P(z)$ be any polynomial with real coefficients and write it as $P(z) = a_0 + a_1z + a_2z^2 + ... + a_nz^n$.
Then, we get
\[\begin{aligned}
\overline{P(z)}
&= \overline{a_0 + a_1z + a_2z^2 + ... + a_nz^n} \\
&= \overline{a_0} + \overline{a_1z} + \overline{a_2z^2} +
\overline{...} + \overline{a_nz^n} & \text{By 4a} \\
&= \overline{a_0} + \overline{a_1}\overline{z} + \overline{a_2}\overline{z^2} + ... + \overline{a_n}\overline{z^n} & \text{By 4b} \\
&= a_0 + a_1\overline{z} + a_2\overline{z^2} + ... + a_n\overline{z^n} &\text{Since $a_i \in \mathbb{R}$, $a_i = \overline{a_i}$} \\
&= a_0 + a_1\overline{z} + a_2\overline{z}^2 + ... + a_n\overline{z}^n & \text{$\overline{z^n} = \overline{z}^n$ by 4b} \\
\end{aligned}\]
Trivially,
\[P(\overline{z}) = a_0 + a_1\cdot\overline{z} + a_2\cdot\overline{z}^2 + ... + a_n\cdot\overline{z}^n\]
Therefore, $\overline{P(z)} = P(\overline{z})$.
\end{proof}
\item Show $\overline{\overline{z}} = z$.
\begin{proof}
If $\overline{z} = x - iy$, then
$\overline{\overline{z}}
= \overline{x - iy}
= x - -(iy)
= x + iy
= z$.
\end{proof}
\end{enumerate}
\item[5.] If $P$ is a polynomial with real coefficients, we want to show that $P(z) = 0$ if and only if $P(\overline{z}) = 0$.
\begin{proof}
For one direction, assume that $P(z) = 0$ and try to prove that $P(\overline{z}) = 0$. First, if $P(z) = 0$ then $\overline{P(z)} = \overline{0} = 0$. Moreover, from 4c we know that $\overline{P(z)} = P(\overline{z})$. So if $\overline{P(z)} = 0$, then $P(\overline{z}) = 0$ as well.
\bigskip
Now, for the other direction assume that $P(\overline{z}) = 0$. With 4c, this implies $\overline{P(z)} = 0$. Because zero is its own complex conjugate, this implies $P(z) = 0$ and this completes the proof.
\end{proof}
\item[12.] Solve using polar coordinates.
\begin{enumerate}
\item $z^6 = 1$
\paragraph{Solution} First, notice that $z^6 = 1$ is equivalent to \[\Pi^{n=6}_{i=1} |z|e^{i\theta} = |z|^6 e^{6_i\theta} = 1\]
This implies that $z$ and $e^{6_i\theta}$ are both equal to 1. Because only $e^0 = 1$, this implies $6\theta = 0 \text{ modulo } 2\pi$. Thus, this implies six different solutions:
\begin{itemize}
\item $6\theta = 0 \implies \theta = 0$
\item $6\theta = 2\pi \implies \theta = \frac{1}{3}\pi$
\item $6\theta = 4\pi \implies \theta = \frac{2}{3}\pi$
\item $6\theta = 6\pi \implies \theta = \pi$
\item $6\theta = 8\pi \implies \theta = \frac{4}{3}\pi$
\item $6\theta = 10\pi \implies \theta = \frac{5}{3}\pi$
\end{itemize}
\item $z^4 = -1$.
\paragraph{Solution} Using polar coordinates, this is equivalent to
\[|z|^4[\cos(4\theta) + i\sin(4\theta)] = -1\]
Because $|z|^4$ can only ever be a positive quantity, this implies $z = 1$ while $\cos(4\theta) + i\sin(4\theta) = -1$. Furthermore, recall that
\[\cos(\theta) + i\sin(\theta) = -1 + 0 = -1\]
when $\theta = \pi$.
Therefore, $4 \cdot \pi = \theta \text{ modulo } 2 \pi$. This implies four solutions:
\begin{itemize}
\item $4\theta = \pi \implies \theta = \frac{\pi}{4}$
\item $4\theta = 3\pi \implies \theta = \frac{3\pi}{4}$
\item $4\theta = 5\pi \implies \theta = \frac{5\pi}{4}$
\item $4\theta = 7\pi \implies \theta = \frac{7\pi}{4}$
\end{itemize}
\end{enumerate}
\item[13.] We want to show that the $n$-th roots of 1 (aside from 1) satisfy the cyclotomic equation $z^{n-1} + z^{n-2} + ... + z + 1 = 0$.
\begin{proof}
Let $z$ be the $n$-th root of unity where $n > 1$, implying that $z^n = 1$. Obviously, it follows $z^n - 1 = 0$.
\bigskip
Using the identity $z^n - 1 = (z - 1)(z^{n - 1} + z^{n - 2} + ... + 1)$, this implies the right hand side must be zero as well. But because $z - 1$ is a non-zero quantity, it must be that
\[z^{n - 1} + z^{n - 2} + ... + 1 = 0\]
as we set out to prove.
\end{proof}
\end{enumerate}
\section*{Wednesday}
\paragraph{Lemma} The sequence $\{i^k\}$ takes on values of either $i, -1, -i, $ or $1$.
\begin{proof}
First, let $k \in \mathbb{N}$ be arbitrary and consider the following exhaustive cases.
\paragraph{Case 1: k modulo 4 = 0} This implies that $k$ is a multiple of 4. Then, notice that
\[i^k = (i^4)^{k/4}\]
Because $k$ is a multiple of 4, $k/4$ is an integer. Therefore, $i^n$ is simply a repeated multiplication of $i^4$. Because $i^4 = 1$, $i^n = 1$ also.
\end{proof}
\paragraph{Case 2: k modulo 4 = 1} This implies that $k - 1$ is a multiple of 4. Therefore,
\[\begin{aligned}
i^k
&= i^{k-1} \cdot i \\
&= 1 \cdot i & \text{$i^{k-1} = 1$ by Case 1}
\end{aligned}\]
\paragraph{Case 3: k modulo 4 = 2} This implies that $k - 2$ is a multiple of 4. Therefore,
\[\begin{aligned}
i^k
&= i^{k-2} \cdot i^2 \\
&= 1 \cdot i^2 = -1
\end{aligned}\]
\paragraph{Case 4: k modulo 4 = 3} This implies that $k - 3$ is a multiple of 4. Therefore,
\[\begin{aligned}
i^k
&= i^{k-3} \cdot i^3 \\
&= 1 \cdot i^3 = -i
\end{aligned}
\]
\begin{enumerate}
\item Prove that $\{i^k\}$ is not a Cauchy sequence.
\begin{proof}
Assume (for contradiction) that $\{i^k\}$ is a Cauchy sequence. This implies that for any $\epsilon > 0$, e.g. $\epsilon_1 = \frac{1}{2}$, we can find an $N$ such that for all $n, m > N$ where $|a_n - a_m| < \epsilon_1 = \frac{1}{2}$.
\bigskip
But as shown previously, for any $N$ there are some $n, m > N$ where $a_n = 1$ and $a_n = -1$. Because, $| 1 - (-1)| = 2 \nless \frac{1}{2}$, this contradicts our previous assumption that $\{i^k\}$ is Cauchy.
\end{proof}
\item Prove that if $\{z_n\}$ converges to $z$, and $z_n$ is an element of the unit circle $S^1$ for all $n$, then $z$ is also in $S^1$.
\begin{proof}
Assume that $\{z_n\}$ converges to $z$, where $z_n \in S^1$ for all $n$.
Then suppose for a contradiction that $z$ is not in $S^1$. First, because $\{z_n\}$ converges to $z$ then for any $\epsilon > 0$ there is some $N$ such that for all $n > N, |z_n - z| < \epsilon$. Moreover, because $z_n$ is on the unit circle while $z$ is not, $|z_n - z|$ is always some positive quantity, call it $\epsilon_1$. Now suppose we pick some point on the unit circle that minimizes $\epsilon_1$ and call it $\epsilon_L$. Again, for the same reasoning $\epsilon_L > 0$.
\bigskip
However, recall that because $\{z_n\} \rightarrow z$, then for any $\epsilon > 0$, e.g. $\frac{\epsilon_L}{2}$, there is some $z_n$ such that $|z_n - z| < \frac{\epsilon_L}{2}$. Because $\frac{\epsilon_L}{2}$ is less than the minimum distance between any point on the unit circle and $z$, it it implies $z_n$ is not on the unit circle--contradicting our previous assumption that $z_n \in S^1$ for all $n$.
\bigskip
Therefore, it must be that if $\{z_n\}$ converges to $z$, and $z_n$ is an element of the unit circle $S^1$ for all $n$, then $z$ is also in $S^1$.
\end{proof}
\end{enumerate}
\end{document}