-
Notifications
You must be signed in to change notification settings - Fork 1
/
122B Homework 10 - Evaluating Improper Trig Integrals.tex
85 lines (69 loc) · 2.88 KB
/
122B Homework 10 - Evaluating Improper Trig Integrals.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 10} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
September 11, 2017
\end{center}
\begin{enumerate}
\item Evaluate the improper integral
\[ \int^{\infty}_0 \frac{x^3 \sin{x}}{(x^2 + 1)(x^2 + 9)} dx \]
First, we need to evaluate
\[
\lim_{R\rightarrow \infty} \int^R_{-R} \frac{x^3 \sin{x}}{(x^2 + 1)(x^2 + 9)} dx
+ \int_{C_R} \frac{z^3 \exp{iz}}{(z^2 + 1)(z^2 + 9)} dz
= 2\pi i Res f(z)
\]
Furthermore, $f(z)$ has isolated singularities whenever
$z^2 + 1 = 0$ and $z^2 + 9 = 0$ implying that $z = \pm i$ and $z = \pm 3i$. Thus, let $R > 3$.
We are primarily concerned with the residues at $z = i$ and $z = 3i$.
\paragraph{Residue at $z = i$} First, notice that we can write $f(z)$ as
\[f(z) = \frac{z^3 \exp{iz}}{(z^2 + 9)(z + i)} \cdot \frac{1}{z - i}
= \frac{\phi{(z)}}{z - i}\]
Because, $\phi(i) = \frac{i^3 \exp{i^2}}{(i^2 + 9)(i + i)} \neq 0$, $q(i) = 0$, and $q'(i) = 1 \neq 0$, $z = i$ is therefore a pole of order 1 at $z = i$ where
\[Res f(i) = \phi(i) = \frac{i^3 \cdot \exp{i^2}}{8 \cdot -1}
= \frac{i \exp{-1}}{8}
\]
\paragraph{Residue at $z = 3i$} First, notice that we can write $f(z)$ as
\[f(z) = \frac{z^3 \exp{iz}}{(z + 3i)(z^2 + 1)} \cdot \frac{1}{z - 3i}
= \frac{\phi{(z)}}{z - 3i}\]
Because, $\phi(i) = \frac{(3i)^3 \exp{3i^2}}{ (3i + 3i) ((3i)^2 + 1)} \neq 0$, $q(i) = 0$, and $q'(i) = 1 \neq 0$, $z = 3i$ is therefore a pole of order 1 at $z = i$ where
\[Res f(i) =
\phi(i) = \frac{(3i)^3 \exp{3i^2}}{ (3i + 3i) ((3i)^2 + 1)}
= \frac{3^3 i^3 \exp{-3}}{6i \cdot (-8)}
= \frac{27 \cdot -i \cdot \exp{-3}}{-48i}
= \frac{9 \cdot \exp{-3}}{16} \]
\paragraph{Value of $\int f(z)$}
Whenever $z \in C_R$, because $x \geq 0$ we get that
\[\begin{aligned}
| Im \int \frac{z^3e^{iz}}{(z^2 + 1)(z^2 + 9)} |
&\leq \int | \frac{z^3e^{iz}}{(z^2 + 1)(z^2 + 9)} | \\
&\leq | \frac{\pi \cdot R^4}{(R^2 + 1)(R^2 + 9)} | \\
&= \frac{R^4}{R^4 + 10R^2 + 9}
\end{aligned}\]
Because the quotient dominates this fraction as $R \rightarrow \infty$, we can say that $\int f(z) \rightarrow 0$ as $R \rightarrow \infty$.
\paragraph{Conclusion}
By equating imaginary parts, we get
\[\begin{aligned}
\lim_{R\rightarrow \infty} \int^R_{-R} \frac{x^3 \sin{x}}{(x^2 + 1)(x^2 + 9)} dx
&= Im(2\pi i Res f(z)) - Im (\int_{C_R} \frac{z^3 \exp{iz}}{(z^2 + 1)(z^2 + 9)} dz) \\
&= Im(2\pi i Res f(z)) \\
&= 2\pi i \cdot \frac{\exp{-1}}{8}
\end{aligned} \]
\item \[\int^{\infty}_0 \frac{\cos{(ax)} - \cos{(bx)}}{x^2} dx = \frac{\pi}{2}(b - a) \]
\paragraph{Solution} ...
\end{enumerate}
\end{document}