-
Notifications
You must be signed in to change notification settings - Fork 1
/
122B Homework 4 - Integrating Power Series.tex
63 lines (54 loc) · 2.2 KB
/
122B Homework 4 - Integrating Power Series.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 4} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
August 16, 2017
\end{center}
\begin{enumerate}
\item[1.] In the $w$ plane, integrate the Taylor series expansion
\[\frac{1}{w} = \sum^{\infty}_{n=0} (-1)^n(w-1)^n \]
where $|w - 1| < 1$, along a contour interior to the circle of convergence from $w = 1$ to $w = z$ to obtain the representation
\[Log(z) = \sum^{\infty}_{n=1} \frac{(-1)^{n+1}}{n}(z-1)^n \]
where $|z - 1| < 1$.
\paragraph{Solution}
\[\begin{aligned}
\int^z_w \frac{1}{w}
&= \int^z_1 \sum^{\infty}_{n=0}(-1)^n(w-1)^n \\
&= \sum^{\infty}_{n=0} (-1)^n \int u^n du &\text{Let $u = w - 1$, $du = dw$} \\
&= \sum^{\infty}_{n=0} (-1)^n \cdot \frac{u^{n+1}}{n+1}|^{w=z}_{w=1} \\
&= \sum^{\infty}_{n=0} (-1)^n \frac{(w-1)^{n+1}}{n+1}|^{w=z}_{w=1} \\
&= \sum^{\infty}_{n=0} (-1)^n [\frac{(z-1)^{n+1}}{n+1} - \frac{(1-1)^{n+1}}{...}] \\
&= \sum^{\infty}_{n=0} (-1)^n \frac{(z-1)^{n+1}}{n+1} \\
&= \sum^{\infty}_{n=1} \frac{(-1)^{n+1}(z-1)^n}{n}
\end{aligned}\]
\item[2.] Use the result of the previous exercise to show that if
\[f(z) = \frac{Log(z)}{z-1}\]
when $z \neq 1$, and $f(1) = 1$, then $f$ is analytic throughout the domain $0 < |z| < \infty$, $-\pi < Argz < \pi$.
\begin{proof}
First, notice that dividing the power series representation for $Log(z)$
\[Log(z) = \sum^{\infty}_{n=1} \frac{(-1)^{n+1}}{n}(z-1)^n \]
by $z-1$, i.e.
\[\sum^{\infty}_{n=1} \frac{(-1)^{n+1}}{n}(z-1)^{n-1} \]
converges to $f(z)$ for $z \neq 1$. Furthermore,
when $z = 1$ we get
\[ \frac{(-1)^2}{1}\cdot(1)^0 + ...\cdot0 + ...\cdot0 \]
In other words, the power series converges to $f(1)$ when $z = 1$.
\bigskip
Now, $Log(z)$ is only continuous in $[-\pi, \pi]$. But otherwise, $f(z)$ is represented by a convergent power series for all $|z| > 0$, and is therefore entire.
\end{proof}
\end{enumerate}
\end{document}