-
Notifications
You must be signed in to change notification settings - Fork 1
/
122B Homework 7 - Quotients of Analytic Functions.tex
87 lines (70 loc) · 2.81 KB
/
122B Homework 7 - Quotients of Analytic Functions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 7} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
August 29, 2017
\end{center}
\begin{enumerate}
\item Show that
\[Res_{z=\pi i} \frac{\exp{zt}}{\sinh{z}} + Res_{z=-\pi i} \frac{\exp{zt}}{\sinh{z}} = -2\cos{\pi t} \]
\begin{proof}
Let us tackle this problem by separating evaluating the numerators and denominators.
\bigskip
First, let us evaluate the denominators. In general, because
$\sinh{z} = -i\sin{iz}$
it follows that
$\frac{d}{dz} \sinh{z} = -i^2 \cdot \cos{iz} = \cos{iz}$
Therefore, the denominators are
\[\begin{aligned}
\cos{i(\pi i)} &= \cos{\pi i^2} = \cos{-\pi}\\
\cos{i(-\pi i)} &= \cos{-\pi i^2} = \cos{\pi}\\
\end{aligned}\]
Both of these expressions are -1, so our residues share a common denominator.
\bigskip
Then, recall the identity
$\exp{z} = \exp{x}\cos{y} + i \exp{x}\sin{y}$
where $x$ and $y$ are the real and imaginary parts of $z$ respectively. Therefore,
\[\begin{aligned}
\exp{\pi it}
&= \exp{0}\cos{\pi t} + i\exp{0} \sin{\pi t} \\
&= \cos{\pi t} + i\sin{\pi t} \\
\exp{-\pi it}
&= \exp{0}\cos{-\pi t} + i\exp{0} \sin{-\pi t} \\
&= \cos{-\pi t} + i\sin{-\pi t}
\end{aligned}\]
\bigskip
Simplifying the original expression, we thus get
\[ Res_{z=\pi i} \frac{\exp{zt}}{\sinh{z}} + Res_{z=-\pi i} \frac{\exp{zt}}{\sinh{z}}
= \frac{ (\cos{\pi t} + \cos{-\pi t}) + i( \sin{\pi t} + \sin{-\pi t} )}{
-1} \]
Because $\cos$ is an even function, and $\sin$ is an odd function, this simplifies to $-2\cos{\pi t}$ as we set out to prove.
\end{proof}
\item Evaluate the integral
\[ \int_C \frac{dz}{\sinh{2z}} \]
about $C: |z| = 2$.
\paragraph{Solution} First, notice that
\[\sinh{2z} = i \sin{i 2z} \]
is differentiable everywhere except for the singularities that occur whenever $\sin{i 2z} = 0$. These occur when $z = \frac{i \pi n}{2}$ for $n \in \mathbb{Z}$. Within the circle $|z| = 2$, this gives us the isolated singular points
$z = 0, \pm \pi i, \pm 2 \pi i$. Now, applying the chain rule we get $\frac{d}{dz} \sinh{2z} = 2\cos{i 2z}$. Therefore, our residues are
\[\frac{1}{ \cos{0} } + \frac{1}{ \cos{\pm 2\pi}} + \frac{1}{ \cos{\pm 4\pi}} \]
Now, recall that $\cos(0)$ is an even function with period $2\pi$, so the above is really just,
\[5 \cdot \frac{1}{ \cos{0} } = 5 \]
Applying Cauchy's Residue Theorem,
\[\int_C \frac{dz}{\sinh{2z}} = 2\pi i \cdot \sum Res = 2\pi i \cdot 5 =
10\pi i\]
\end{enumerate}
\end{document}