-
Notifications
You must be signed in to change notification settings - Fork 1
/
122B Homework 8 - Evaluating Improper Integrals.tex
128 lines (101 loc) · 4.36 KB
/
122B Homework 8 - Evaluating Improper Integrals.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Homework 8} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
September 5, 2017
\end{center}
\begin{enumerate}
\item Evaluate the improper integral \[\int_0^\infty \frac{dx}{(x^2 + 1)^2} \]
\paragraph{Solution}
We'll solve this by evaluating it over the complex axis of the real plane. First, notice that this is equivalent to the integral
\[
\int^R_{-R} \frac{dx}{(x^2 + 1)^2} + \int_{C_R} \frac{dz}{(z^2 + 1)^2} = 2\pi i Res f(z)
\]
Now, notice that our function has isolated singularities whenever $(z^2 + 1)^2 = 0 \implies z^2 = -1$ implying that $z = \pm i$. Therefore, we'll want to integrate over a semicircle of radius $R > 1$.
\bigskip
Moreover, whenever $z \in C_R$, this implies that $|z| = R$. Therefore,
\[(z^2 + 1)^2 \geq ||z|^2 + 1|^2 = |R^2 + 1|^2 \]
This then implies
\[\int_{C_R} \frac{dz}{(z^2 + 1)^2} \leq \frac{1}{|R^2 + 1|^2} \cdot
\int_{C_R} dz = \frac{\pi i}{(R^2 + 1)^2}\]
Since the right hand side goes to zero as $R \rightarrow \infty$, the entire complex integral disappears. Finally, we just need to calculate the residue of $f(z)$ in $C_R$ at $z = i$. Recall that the residue of quotients, and we get
\[\begin{aligned}
\frac{p(z_0)}{q'(z_0)}
&= \frac{1}{[(z^2 + 1)^2]'} \\
&= \frac{1}{2(z^2 + 1) \cdot 2z} \\
&= 4z^3 + 4z
\end{aligned}\]
Because f is even,
\[\begin{aligned}
\int^\infty_{-\infty} \frac{dx}{(x^2 + 1)^2}
&= 2\pi i Res f(i) \\
&= 2\pi i(\frac{1}{4i^3 + 4}) \\
&= 2\pi i \cdot \frac{1}{4 - 4i}
\end{aligned}\]
\item Evaluate the improper integral \[\int_0^\infty \frac{dx}{(x^2 + 1)(x^2 + 4)} \]
\paragraph{Solution} We'll take roughly the same steps as above.
First, notice that this is equivalent to the integral
\[
\int^R_{-R} \frac{dx}{(x^2 + 1)(x^2 + 4)} +
\int_{C_R} \frac{dz}{(z^2 + 1)(z^2 + 4)} = 2\pi i Res f(z)
\]
Using a similar argument to problem 1, we can show that the complex integral disappears. If I weren't so tired, I could probably come up with a better argument that this flimsy sentence.
\bigskip Now, notice that the function
\[\frac{1}{(z^2 + 1)(z^2 + 4)}\] has isolated singularities whenever
$(z^2 + 1)(z^2 + 4) = 0$ or equivalently, whenever $z^4 + 5z^2 + 4 = 0$.
Applying the quadratic formula, this implies
\[\begin{aligned}
z^2
&= \frac{-5 + \sqrt{5^2 - 4\cdot 1 \cdot 4}}{2} \\
&= \frac{-5 + \sqrt{25 - 16}}{2} \\
&= \frac{-5 + 3}{2} \\
&= -4
\end{aligned}\]
Therefore, we have singularities whenever $z = 2i$. Finally, we just have to compute the residues and I can finally be done with this problem. But before doing that, notice that
\[\begin{aligned}
\frac{d}{dz} (z^2 + 1)(z^2 + 4) &=
2z \cdot (z^2 + 4) - 2z \cdot (z^2 + 1) \\
8z - 2z = 6z
\end{aligned} \]
Furthermore, recall that the residue of a quotient implies that our residue is simply
$\frac{1}{6z}$ evaluated at $z = 2i$. Therefore, our original integral is equal to $2\pi i \cdot \frac{\pi}{12i} = \frac{1}{6i}$.
\item Find the Cauchy principal value of
\[\int_{-\infty}^{\infty} \frac{x dx}{(x^2 + 1)(x^2 + 2x + 2)} \]
\paragraph{Solution}
First, let us identify the singularities of
\[\frac{z}{(z^2 + 1)(z^2 + 2z + 2) = 0} \]
This function is singular whenever either $(z^2 + 1) = 0$ or $z^2 + 2z + 2 = 0$. For the first equation, this implies there are isolated singularities at $z = \pm i$. For the second, applying the quadratic equation and we get
\[\begin{aligned}
z
&= \frac{-2 \pm \sqrt{2^2 - 4(1)(2)}}{2} \\
&= \frac{-2 \pm \sqrt{4 - 8}}{2} \\
&= \frac{-2 \pm 2i}{2}
&= -1 \pm 1i
\end{aligned}\]
Because the principal value is simply
\[P.V. \int^\infty_{-\infty} f(x) dx = 2\pi i Res f(x) \]
and the residue of the quotient is simply the following quantity evaluated at
$z = -1 + i$
\[\begin{aligned}
\frac{z}{(z^2 + 1)(z^2 + 2z + 2)}
&= \frac{z}{[(z^2 + 1)(z^2 + 2z + 2)]']} \\
&= \frac{z}{2z(z^2 + 2z + 2) - (2z + 2)(z^2 + 1)} \\
&= 2z \\
\end{aligned}\]
The principal value is $2\pi i \cdot 2 \cdot (-1 + i) = 4(-1 + i)$.
\end{enumerate}
\end{document}