-
Notifications
You must be signed in to change notification settings - Fork 1
/
122B Midterm Practice.tex
304 lines (235 loc) · 9.76 KB
/
122B Midterm Practice.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
\documentclass[11pt]{article}
\usepackage[margin=1.25in]{geometry}
\usepackage{graphicx,tikz}
\usepackage{amsmath,amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{boondox-cal}
\title{ }
\newtheorem*{thm}{Theorem}
\begin{document}
%\maketitle
%\date
\begin{center} % centers
\Large{Midterm Practice} % Large makes the font larger, put title inside { }
\end{center}
\begin{center}
Vincent La \\
Math 122B \\
August 22, 2017
\end{center}
\section{Theorems}
\paragraph{Residues at Poles}
Suppose that a function $f(z)$ can be written in the form
\[f(z) = \frac{\phi{z}}{z - z_0} \]
where $\phi(z)$ is analytic at $z_0$ and $\phi(z_0) \neq 0$. Then, $f(z)$ has a Laurent series representation
\[...\]
and its residue is given by
\[b_1 = \phi(z_0) \]
\section{Homework}
\begin{enumerate}
\item[1.]
\begin{enumerate}
\item Does the function $f(z) = \frac{e^z}{z}$ have a MacLaurin series representation?
\paragraph{Solution} Yes.
First, recall that
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \]
which converges for all $z \in \mathbb{C}$. Therefore,
\[\frac{e^z}{z} = \sum^{\infty}_{n=0} \frac{z^{n - 1}}{n!} \]
which converges for $0 < |z| < \infty$.
\item Given the Laurent series representation
\[
\frac{5z - 2}{z(z - 1)} = \frac{3}{z - 1} + 2 - 2(z - 1) +
2(z - 1)^2 - 2(z - 1)^3 + ...
\]
$|z - 1| < 1$ determine whether the isolated singular point $z_0 = 1$ of
$\frac{5z - 2}{z(z - 1)}$ is a pole of order $m$, a simple pole...
\paragraph{Answer} The point $z_0 = 1$ is a simple pole (pole of order 1).
\item Given the Laurent series expansion
\[f(z) = \frac{1}{z^2} + \frac{1}{z^2} + 1 + z + z^2 + z^3 + ...\]
which converges for $|z| < 1$, determine the residue of $f(z) = 0$.
The residue is 0, because there is no $\frac{b_1}{z^1}$ term.
\item Does there exist a power series $\sum_{n = 0} a_n z^n$ that converges at $z = 2 + 3i$ and diverges at $z = 3 - i$.
\paragraph{Answer} Yes, and in fact there's an infinite number of them. Here, I will provide one example.
First, notice that
\[\begin{aligned}
|2 + 3i|^2 &= \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \\
|3 - i|^2 &= \sqrt{3^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10} \\
\end{aligned}\]
Now, consider the power series
\[
\sum^{\infty}_{n=0} (\frac{4}{z})^n
\]
If $|z| = \sqrt{13}$, then $\frac{4}{z} < 1$ and this series converges. However, if $|z| = \sqrt{10}$, then $\frac{4}{z} > 1$ and this series diverges.
\end{enumerate}
\item[2.] ...
\item[3.]
\begin{enumerate}
\item Give two Laurent series expansions in powers of $z$ for the function
\[f(z) = \frac{1}{z^2(3 - z)} \]
and provide regions of validity.
\paragraph{Solution about $z = 0$}
First, rewrite $f(z)$ as
\[f(z) = \frac{1}{z^2(3 - z)} = \frac{1}{3z^2} \cdot \frac{1}{1 - \frac{z}{3}} \]
Now, recall the MacLaurin series
\[\frac{1}{1 - z} = \sum^{\infty}_{n=0} (-1)^nz^n \]
which converges for $|z| < 1$. Applying the change of variables $z = \frac{z}{3}$,
we get
\[\frac{1}{1 - z/3} = \sum^{\infty}_{n=0} (-1)^n (\frac{z}{3})^n \]
which converges for $|\frac{z}{3}| < 1 \implies |z| < 3$.
\bigskip
Applying all of this, we get
\[\begin{aligned}
f(z)
&= \frac{1}{3z^2} \cdot \frac{1}{1 - \frac{z}{3}} \\
&= \frac{1}{3z^2} \cdot \sum^{\infty}_{n=0} (-1)^n (\frac{z}{3})^n \\
&= \frac{1}{3z^2} \cdot \sum^{\infty}_{n=0} (\frac{-1}{3})^n z^n \\
&= \frac{1}{3} \cdot \sum^{\infty}_{n=0} (\frac{-1}{3})^n z^{n-2}
& (0 < |z| < 3)\\
\end{aligned}\]
\paragraph{Solution about $z = 1$}
\end{enumerate}
\item[4.]
\begin{enumerate}
\item Find the MacLaurin series representation of $\cos{z} = \frac{e^{iz} - e^{-iz}}{2}$
\bigskip
\[\cos{z} = \sum^{\infty}_{n=0} \frac{(-1)^n (z^{2n})}{(2^n)!} \]
\begin{proof}
First, calculate and evaluate the first few derivatives of $\cos{z}$ at $z = 0$.
\[\begin{aligned}
f^{(0)}(0) &= \cos{0} = 1 \\
f^{(1)}(0) &= -\sin{0} = 0 \\
f^{(2)}(0) &= -\cos{0} = -1 \\
f^{(3)}(0) &= \sin{0} = 0 \\
f^{(4)}(0) &= \cos{0} = 1 \\
\end{aligned}\]
As we can see, the derivatives of $\cos{z}$ follow a predictable pattern. Continuing, using the general formula for a MacLaurin series
\[f(z) = \sum a_n z^n\]
implies that
\[\cos{z} = \sum^{\infty}_{\text{$n$ odd}} 0 +
\sum^{\infty}_{\text{$n$ even}} \frac{(-1)^{\frac{n}{2}}}{n!} \cdot (z^n) \]
Furthermore, if $n$ is even, then there is some integer such that $n$ is divisible by $2$, i.e. $n = 2n$. Using this change of variables
\[\cos{z} = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n)!} \cdot (z^{2n}) \]
as we set out to prove.
\end{proof}
\item Using the MacLaurin series representation for the function $\cos{z}$, find the MacLaurin series representation for $\sin{z}$
\end{enumerate}
\item[6.] Find the first three non-zero terms in the MacLaurin expansion of
\[f(z) = \int_0^{z} e^{s^2} ds\]
\paragraph{Solution}
First, recall the MacLaurin Series
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \]
Thus, letting $z = s^2$, we get
\[e^{s^2} = \sum^{\infty}_{n=0} \frac{{s^2}^n}{n!} \]
which, like the original series, converges for all $|z| < \infty$.
Now,
\[\begin{aligned}
\int_0^z e^{s^2} ds
&= \int_0^z \sum^{\infty}_{n=0} \frac{{s^2}^n}{n!} ds \\
&= \sum^{\infty}_{n=0} \frac{
\int_0^z {s^2}^n ds }{n!} & \text{Integrate term by term} \\
&= \sum^{\infty}_{n=0} \frac{s^{2n + 1}}{(2n + 1) \cdot n!} \\
\end{aligned}\]
Therefore, the first three non-zero terms are
\[
\frac{s^{2(0) + 1}}{(2\cdot0 + 1) \cdot 0!} +
\frac{s^{2(0) + 1}}{(2\cdot1 + 1) \cdot 1!} +
\frac{s^{2(0) + 1}}{(2\cdot2 + 1) \cdot 2!}
\]
\item[8.] Find residue at $z = 0$ of $\frac{1}{z^2 + z^3}$.
First, recall the MacLaurin series
\[ \frac{1}{1+z} = \sum^{\infty}_{n=0} (-1)^n z^n \]
which converges for $|z| <1$. Thus,
\[\begin{aligned}
\frac{1}{z^2} \cdot \frac{1}{1+z}
&= \sum^{\infty}_{n=0} (-1)^n z^{n-2} & (|z| < 1) \\
&= (-1)^0 z^{-2} + (-1)^1 z^{-1} + (-1)^2 z^0 + ... \\
&= z^{-2} - \mathbf{z^{-1}} + ... \\
\end{aligned}\]
Therefore, $Res_{z=0} f(z) = 1$.
\item[9.]
\begin{enumerate}
\item Use Cauchy's Residue Theorem to evaluate the integral around the circle
$|z| = 3$ with a positive orientation fo $z^3 \cdot \exp{\frac{1}{z^2}}$
\paragraph{Solution} To begin, we have an isolated singularity at $z = 0$. Then, recall the MacLaurin Series
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \]
Using the change of variables $z = \frac{1}{z^2}$, we get
\[\begin{aligned}
z^3 \cdot \exp{\frac{1}{z^2}}
&= z^3 \sum^{\infty}_{n=0} \frac{(\frac{1}{z^2})^n
}{n!} \\
&= z^3 \sum^{\infty}_{n=0} \frac{z^{-2n}}{n!} \\
&= \sum^{\infty}_{n=0} \frac{z^{-2n + 3}}{n!} \\
\end{aligned}\]
Expanding this series, we get
\[\frac{z^3}{0!} + \frac{z^{-2 + 3}}{1!} + \mathbf{\frac{z^{-4+3}}{2!}} + ...
\]
Therefore our residue is $2! = 2$.
\item ...
\end{enumerate}
\item[10.] Write the principal part of the following functions at their singular point and determine whether that point is a pole, a removable singular point ,or an essential singular point:
\begin{enumerate}
\item $z \exp{\frac{1}{z^3}} $
\paragraph{Solution} First, notice that we have a singular point at $z = 0$. Then, recall the MacLaurin Series
\[e^z = \sum^{\infty}_{n=0} \frac{z^n}{n!} \]
Using the change of variables $z = \frac{1}{z^3}$, we get
\[\begin{aligned}
z \exp{\frac{1}{z^3}}
&= z \cdot \sum^{\infty}_{n=0} \frac{( \frac{1}{z^3} )^n}{n!} \\
&= z \cdot \sum^{\infty}_{n=0} \frac{z^{-3n}}{n!} \\
&= \sum^{\infty}_{n=0} \frac{z^{-3n + 1}}{n!} \\
\end{aligned}\]
Expanding the series, we get
\[\frac{z^1}{0!} + \frac{z^{-3 + 1}}{1!} + \frac{z^{-6 + 1}}{2!} + ... \]
Because this series has an infinite number of negative terms, it is an essential singular point.
\item $\frac{z^3}{1 + z} $
First, notice that $f(z)$ has a singularity when $z + 1 = 0 \implies z = -1$. Then, recall the MacLaurin Series
\[
\frac{1}{1 + z} = \sum^{\infty}_{n=0} (-1)^n z^n
\]
which converges for $|z| < 1$. Therefore,
\[\begin{aligned}
z^3 \cdot \frac{1}{1 + z}
&= z^3 \cdot \sum^{\infty}_{n=0} (-1)z^n & (|z| < 1) \\
&= \sum^{\infty}_{n=0} (-1)z^{n + 3} \\
\end{aligned}\]
By looking at the exponents on $z$ within the sum, we can tell that this series has an infinite number of terms with positive exponents but none with negative ones. Therefore, $z = -1$ is a removal singular point.
\end{enumerate}
\item[11.] Show that the singular point of each function is a pole and determine its order $m$ and the corresponding residue
\begin{enumerate}
\item $\frac{z^2 + 2}{z^2 - 1}$
\paragraph{Solution} First, notice that this function has two singular points that occur when
\[\begin{aligned}
z^2 - 1 &= 0 \\
z^2 &= 1 \\
z &= \pm \sqrt{1} \\
z &= \pm 1
\end{aligned}\]
Also, I will be using the fact that
\[(z - 1)(z + 1) = z^2 - 1\]
\begin{enumerate}
\item $\mathbf{z = 1}$
First, rewrite $f(z)$ as follows
\[\begin{aligned}
\frac{z^2 + 2}{z^2 - 1}
&= \frac{z^2 + 2}{(z - 1)(z + 1)} \\
&= \frac{z^2 + 2}{(z - 1)(z + 1)} \cdot
\frac{\frac{1}{z + 1}}{\frac{1}{z + 1}} \\
&= \frac{ \mathbf{\frac{z^2 + 2}{z + 1}} }{z - 1} \\
\end{aligned}\]
Now, call the bolded part $\phi(z)$. Furthermore, notice that
$\phi(z)$ is analytic at $z = 1$ and that
\[
\phi(1) = \frac{1^2 + 2}{1 + 1} = \frac{3}{2} \neq 0
\]
Therefore, this point is a simple pole with residue $\frac{3}{2}$.
\item $\mathbf{z = -1}$
First, rewrite $f(z)$ as
\[\begin{aligned}
\end{aligned} \]
\end{enumerate}
\item $(\frac{z}{3z + 5})^3$
\end{enumerate}
\item[12.] Evaluate the following integrals
\end{enumerate}
\end{document}