Skip to content

Latest commit

 

History

History
19 lines (14 loc) · 637 Bytes

README.md

File metadata and controls

19 lines (14 loc) · 637 Bytes

Implementing Federated Learning using PySyft

Basics:

  • Dataset - MNIST
  • Number of Workers - 32
  • Classification Model - CNN (see the details in models directory)
  • Tools Used - PySyft, PyTorch

Instructions:

  • Prerequisite: python3, pip3, pysyft, pytorch
  • RUN: "main_fed.py"
  • To edit the basic characteristics of the model, check "/utils/Arguments.py". No CLI has been provided for now.
  • To edit the classification model, check "/models/CNN.py"

Future Work:

  • Add a CLI to make the process of editing the arguments easier.
  • Facilitate training by selecting a subset of workers instead of using all the workers.