-
Notifications
You must be signed in to change notification settings - Fork 3
/
innocent_script.py
218 lines (184 loc) · 7.43 KB
/
innocent_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
The main sampling script.
Takes pixel positions (y, x) and the number of components (npeaks)
from the command line (via sys.argv[]), sets the priors, the likelihood
function, preforms some sanity checks, and fires up MultiNest through
pymultinest.
"""
import os
import sys
import warnings
import mpi4py
import numpy as np
from astropy import log
from astropy.io import fits
# Those import warnings are annoying
with warnings.catch_warnings():
warnings.simplefilter('ignore')
import pymultinest
from pyspeckit.spectrum.models.ammonia import cold_ammonia_model
from pyspecnest.ammonia import get_nh3_model
from pyspecnest.chaincrunch import pars_xy, lnZ_xy, get_zero_evidence
# All the I/O functions now reside here
import opencube
# Configuration for line modelling setup (gets passed to pyspeckit)
from config import line_names, npars
# Path settings
from config import name_id, proj_dir, file_Zs
from config import default_yx, default_npeaks
# Kwargs for digesting and saving spectral cube (making it on the
# fly every time we need a spectrum is too slow!)
from config import cube_save_kwargs
# Finally, MultiNest settings and priors
from config import n_live_points, sampling_efficiency, get_priors_xoff_wrapped
# Compatibility with Python 2.7
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
def mpi_rank():
"""
Returns the rank of the calling process.
"""
comm = mpi4py.MPI.COMM_WORLD
rank = comm.Get_rank()
return rank
# pop culture references always deserve their own function
def i_am_root():
"""
Checks if the running subprocess is of rank 0
"""
try:
return True if mpi_rank() == 0 else False
except AttributeError:
# not running MPI
return True
try:
npeaks = int(sys.argv[1])
except IndexError:
npeaks = default_npeaks
log.info("npeaks not specified, setting to {}".format(npeaks))
try:
yx = int(sys.argv[2]), int(sys.argv[3])
except IndexError:
yx = default_yx
log.info("xy-pixel not specified, setting to {}".format(yx[::-1]))
try:
plotting = bool(int(sys.argv[4]))
except IndexError:
plotting = 0
if not plotting:
plot_fit, plot_corner, show_fit, show_corner = False, False, False, False
else: # defaults a for non-batch run
plot_fit = True
plot_corner = True
show_fit = True
show_corner = True
from chainconsumer import ChainConsumer # Optional if no plotting is done
import matplotlib.pyplot as plt
plt.rc('text', usetex=True)
y, x = yx
sp = opencube.get_spectrum(x, y, **cube_save_kwargs)
fittype_fmt = 'cold_ammonia_x{}'
fitmodel = cold_ammonia_model
sp.specfit.Registry.add_fitter(fittype_fmt.format(npeaks), npars=npars,
function=fitmodel(line_names=line_names))
# is this still needed?
opencube.update_model(sp, fittype_fmt.format(npeaks))
# needed because of this:
# https://github.com/pyspeckit/pyspeckit/issues/179
sp.specfit.fitter.npeaks = npeaks
# npeaks > 1 seems to break because of fitter.parnames is not mirrored
if len(sp.specfit.fitter.parnames) == npars and npeaks > 1:
sp.specfit.fitter.parnames *= npeaks
# TODO: make a wrapper function for pyspecnest instead!
priors = get_priors_xoff_wrapped(npeaks)
nh3_model = get_nh3_model(sp, line_names, sp.error,
priors=priors, npeaks=npeaks)
# Safeguard - check some common causes of failure before scheduling
# a job that would just throw tens of thousands of errors at us
no_valid_chans = not np.any(np.isfinite(nh3_model.ydata))
sanity_check = np.isfinite(
nh3_model.log_likelihood([15, 5, 15, 0.2, 7, 0.5] * npeaks,
nh3_model.npars, nh3_model.dof))
if no_valid_chans or not sanity_check:
# This should fail if, e.g., the errors are not finite
log.error("no valid pixels at x={}; y={}. Aborting.".format(*yx[::-1]))
sys.exit()
# The first process gets to make the directory structure!
output_dir = os.path.join(proj_dir, 'nested-sampling/')
fig_dir = os.path.join(output_dir, 'figs/')
suffix = 'x{1}y{0}'.format(*yx)
chains_dir = '{}chains/{}_{}'.format(output_dir, name_id, suffix)
if not os.path.exists(chains_dir):
try: # hacks around a race condition
os.makedirs(chains_dir)
except OSError as e:
if e.errno != 17:
raise
chains_dir = '{}/{}-'.format(chains_dir, npeaks)
# Run MultiNest on the model+priors specified
pymultinest.run(nh3_model.xoff_symmetric_log_likelihood,
nh3_model.prior_uniform, nh3_model.npars,
outputfiles_basename=chains_dir,
verbose=True, n_live_points=n_live_points,
sampling_efficiency=sampling_efficiency)
# The remainder of the script is not essential for sampling, and can be safely
# moved out into a script of its own.
if i_am_root() and plot_fit:
# parse the results as sensible output
from pyspecnest.chaincrunch import analyzer_xy
a = analyzer_xy(x, y, npeaks, output_dir=output_dir,
name_id=name_id, npars=npars)
a_lnZ = a.get_stats()['global evidence']
log.info('ln(Z) for model with {} line(s) = {:.1f}'.format(npeaks, a_lnZ))
try:
lnZ0 = fits.getdata(file_Zs)[0]
except (FileNotFoundError, OSError) as e:
cubes = opencube.make_cube_shh()
lnZ0 = get_zero_evidence(data=cubes.cube, rms=cubes.errorcube,
normalize=False)
Zs = lnZ_xy(list(np.arange(npeaks+1)), x=x, y=y, output_dir=output_dir,
name_id=name_id, silent=True, lnZ0=(lnZ0[y, x], 0))
log.info('ln(Z{}/Z{}) = {:.2f}'.format(npeaks, npeaks-1,
Zs[npeaks] - Zs[npeaks-1]))
if npeaks > 1:
log.info('ln(Z{}/Z{}) = {:.2f}'.format(npeaks, 0, Zs[npeaks] - Zs[0]))
if plot_fit and i_am_root():
sp.plotter(errstyle='fill')
mle_pars = pars_xy(x=x, y=y, npars=npars, npeaks=npeaks,
output_dir=output_dir, name_id=name_id)
mle_parinfo = sp.specfit.fitter._make_parinfo(mle_pars, npeaks=npeaks)[0]
try:
sp.specfit.plot_fit(xarr=sp.xarr, pars=mle_parinfo,
show_components=True)
except TypeError:
# eh? does it want pars or parinfo?
sp.specfit.plot_fit(xarr=sp.xarr, pars=mle_pars, show_components=True)
# annotate the Bayes factors
plt.annotate('ln(Z{}/Z{}) = {:.2f}'.format(npeaks, npeaks-1,
Zs[npeaks] - Zs[npeaks-1]), xy=(0.05, 0.90),
xycoords='axes fraction')
if npeaks > 1:
plt.annotate('ln(Z{}/Z{}) = {:.2f}'.format(npeaks, 0,
Zs[npeaks] - Zs[0]), xy=(0.05, 0.85),
xycoords='axes fraction')
if show_fit:
plt.show()
fig_name = "{}-fit-{}-x{}".format(name_id, suffix, npeaks)
plt.savefig(os.path.join(fig_dir, fig_name + ".pdf"))
if plot_corner and i_am_root():
mle_multinest = pars_xy(x=x, y=y, npars=npars, npeaks=npeaks,
output_dir=output_dir, name_id=name_id)
unfrozen_slice = nh3_model.get_nonfixed_slice(a.data.shape, axis=1)
c = ChainConsumer()
parameters = nh3_model.get_names(latex=True, no_fixed=True)
c.add_chain(a.data[:, 2:][unfrozen_slice], parameters=parameters)
c.configure(statistics="max", summary=True)
fig = c.plotter.plot(figsize="column")
fig.get_size_inches()
fig.set_size_inches(9, 7)
fig_name = "{}-corner-{}-x{}".format(name_id, suffix, npeaks)
plt.savefig(fig_dir + fig_name + ".pdf")
if show_corner:
plt.show()