-
Notifications
You must be signed in to change notification settings - Fork 1
/
infer.py
81 lines (64 loc) · 2.63 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# The MIT License
#
# Copyright (c) 2020 Vincent Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import argparse
import yaml
import torch
from hydra.utils import instantiate
from omegaconf import OmegaConf
from modules.dataset import CityscapesDataset
from utils import show_tensor_images
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config.yml')
parser.add_argument('-e', '--encode', action='store_true', default=False)
parser.add_argument('-n', '--n_show', type=int, default=5)
return parser.parse_args()
def main():
args = parse_arguments()
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
config = OmegaConf.create(config)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gaugan = instantiate(config.gaugan).to(device)
gaugan.load_state_dict(torch.load(config.resume_checkpoint)['gaugan_model_dict'])
test_dataloader = torch.utils.data.DataLoader(
instantiate(config.test_dataset),
collate_fn=CityscapesDataset.collate_fn,
**config.test_dataloader,
)
n = 0
for (x, l) in test_dataloader:
if n == args.n_show:
break
x = x.to(device)
l = l.to(device)
if not args.encode:
z = gaugan.sample_z(mu=None, logvar=None, n_samples=x.size(0))
else:
mu, logvar = gaugan.encode(x)
z = gaugan.sample_z(mu=mu, logvar=logvar)
x_fake = gaugan.generate(z, l)
show_tensor_images(x_fake.to(x.dtype))
show_tensor_images(x)
n+= 1
if __name__ == '__main__':
main()